Activity

  • Yusuf Damsgaard posted an update 4 weeks, 1 day ago

    Lung transplant recipients are at increased risk of candidemia, especially in the early posttransplant period. However, the specific predisposing factors have not been established. The natural history of candidemia after lung transplantation, in the absence of universal antifungal prophylaxis, is not known.

    We retrospectively examined the epidemiology of candidemia at any time posttransplant in patients who underwent lung transplantation at our center between 2016 and 2019. We undertook a case-control study and used logistic regression to evaluate the risk factors for candidemia during the first 30 days posttransplantation.

    During the study period 712 lung transplants were performed on 705 patients. Twenty-five lung transplant recipients (LTRs) (3.5%) experienced 31 episodes of candidemia. The median time to candidemia was 19.5 days (IQR 10.5-70.5), with 61.2% (n = 19) episodes of candidemia occurring within the first 30 days posttransplantation. Pretransplant hospitalization, posttransplant ECMO, and posttransplant renal replacement therapy were associated with an increased risk of candidemia in the first 30 days posttransplant. Of those with candidemia in the first 30 days, 31.2% died within 30 days of the index positive blood culture. Candidemia was associated with decreased survival within 30 days posttransplant.

    This study highlights the greatest risk period of lung transplant recipients for development of candidemia and identifies several factors associated with increased risk of candidemia. These findings will help guide future studies on antifungal prophylaxis.

    This study highlights the greatest risk period of lung transplant recipients for development of candidemia and identifies several factors associated with increased risk of candidemia. These findings will help guide future studies on antifungal prophylaxis.Owing to the strong nucleophilicity of the NH2 group, free-NH2 glycinates react with MBH acetates to usually deliver N-allylated products even in the absence of catalysts. Without protection of the NH2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N-allylation to α-C allylation. The reaction formed chiral multisubstituted glutamic acid esters as SN 2′-SN 2′ products in good yields with excellent stereoselectivity (up to 86 % yield, >20  1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo- and enantiocontrol of the pyridoxal catalysts.It has been more than a decade since Acetobacter senegalensis was isolated, identified and described as a thermotolerant strain of acetic acid bacteria. It was isolated from mango fruits in Senegal and used for industrial vinegar production in developing countries, mainly in sub-Saharan Africa. The strain was tested during several spirit vinegar fermentation processes at relatively high temperatures in accordance with African acclimation. The upstream fermentation process had significant stress factors, which are highlighted in this review so that the fermentation process can be better controlled. Due to its high industrial potential, this strain was extensively investigated by diverse industrial microbiologists worldwide; they concentrated on its microbiological, physiological and genomic features. A research group based in Belgium proposed an important project for the investigation of the whole-genome sequence of A. senegalensis. It would use a 454-pyrosequencing technique to determine and corroborate featuemicals. The use of a thermotolerant Acetobacter senegalensis strain as a solid functional starter culture, as well as the design of a new adapted bioreactor, has significantly contributed to food security and the creation of small- to medium-sized enterprises that produce mango vinegar in West Africa.New antifungals are urgently needed to combat invasive fungal infections, due to limited types of available antifungal drugs and frequently encountered side effects, as well as the quick emergence of drug-resistance. We previously developed amine-pendent poly(2-oxazoline)s (POXs) as synthetic mimics of host defense peptides (HDPs) to have antibacterial properties, but with poor antifungal activity. Hereby, we report the finding of short guanidinium-pendent POXs, inspired by cell-penetrating peptides, as synthetic mimics of HDPs to display potent antifungal activity, superior mammalian cells versus fungi selectivity, and strong therapeutic efficacy in treating local and systemic fungal infections. Moreover, the unique antifungal mechanism of fungal cell membrane penetration and organelle disruption explains the insusceptibility of POXs to antifungal resistance. The easy synthesis and structural diversity of POXs imply their potential as a class of promising antifungal agents.Extreme events such as the summer drought of 2018 in Central Europe are projected to occur more frequently in the future and may cause major damages including increased tree mortality and negative impacts on forest ecosystem services. Here, we quantify the response of >1 million forest pixels of 10 × 10 m across Switzerland to the 2018 drought in terms of resistance, recovery, and resilience. We used the Normalized Difference Water Index (NDWI) derived from Sentinel-2 satellite data as a proxy for canopy water content and analyzed its relative change. We calculated NDWI change between the 2017 pre-drought and 2018 drought years (indicating resistance), 2018 and the 2019 post-drought (indicating recovery), and between 2017-2019 (indicating resilience). Analyzing the data from this large natural experiment, we found that for 4.3% of the Swiss forest the NDWI declined between 2017 and 2018, indicating areas with low resistance of the forest canopy to drought effects. While roughly 50% of this area recovered, in 2.7% of the forested area NDWI continued to decline from 2018 to 2019, suggesting prolonged negative effects or delayed damage. We found differential forest responses to drought associated with site topographic characteristics and forest stand characteristics, and to a lesser extent with climatic conditions and interactions between these drivers. Low drought resistance and high recovery were most prominent at forest edges, but also on south-facing slopes and lower elevations. Tree functional type was the most important driver of drought resilience, with most of the damage in stands with high conifer abundance. Our results demonstrate the suitability of satellite-based quantification of drought-induced forest damage at high spatial resolution across large areas. Such information is important to predict how local site characteristics may impact forest vulnerability to future extreme events and help in the search for appropriate adaptation strategies.A facile synthesis of cyclopropenes and fluorinated cyclopropanes from readily available alkyl triflones was developed. The reaction, regardless of electronic effect, gave products in good to excellent yields and moderate diastereoselectivity. The mechanism may involve tandem Michael addition of triflones/intramolecular nucleophilic cyclization (elimination of -SO2 CF3 )/elimination of fluoride.Polymer syntheses in a high throughput format are still challenging due to the tedious procedures for prior deoxygenation and catalyst removal. 2D metal-organic framework (MOF) nanosheets are advantageous for elevating the catalytic efficiency and catalyst recyclability. Polymerization of a wide variety of monomers, including hydrophilic acrylamides and hydrophobic acrylates, is attempted directly in a multi-well plate by employing Zn-ZnPPF-2D nanosheets (PPF = porphyrin paddlewheel framework) as a heterogeneous photocatalyst. Various parameters such as monomer concentration, catalyst concentration, and light wavelength are investigated with respect to their effects on polymerization rate and the degree of control over the molecular weight and molecular weight distribution. Due to the larger surface area and more accessible catalytic sites, the top-performing Zn-ZnPPF-2D exhibits fast polymerization kinetics over the Zn-ZnPPF-3D bulk crystals. In addition, the synthesis of triblock copolymers with a single loading of catalysts confirms the outstanding catalytic performance of these 2D MOF catalysts. Finally, photopolymerization is demonstrated to be achievable entirely in a microliter-scale human cell culture medium. As such, this strategy provides high levels of control and precision over macromolecular synthesis outcomes that best align with the requirements of high throughput approaches toward biological applications.Conjugated polymers possess better electron conductivity due to large π-electron conjugated configuration endowing them significant scientific and technological interest. However, the obvious deficiency of active-site underutilization impairs their electrochemical performance. Therefore, designing and engineering π-conjugated polymers with rich redox functional groups and mesoporous architectures could offer new opportunities for them in these emerging applications and further expand their application scopes. read more Herein, a series of 1,3,5-tris(4-aminophenyl) benzene (TAPB)-based π-conjugated mesoporous polymers (π-CMPs) are constructed by one-pot emulsion-induced interface assembly strategy. Furthermore, co-induced in situ polymerization on 2D interfaces by emulsion and micelles is explored, which delivers sandwiched 2D mesoporous π-CMPs-coated graphene oxides (GO@mPTAPB). Benefiting from specific redox-active functional groups, excellent electron conductivity and a 2D mesoporous conjugated framework, GO@mPTAPB exhibits high capability of accommodating Li+ anions (up to 382 mAh g-1 at 0.2 A g-1 ) and outstanding electrochemical stability (87.6% capacity retention after 1000 cycles). The ex situ Raman and impedance spectra are further applied to reveal the high reversibility of GO@mPTAPB. This work will greatly promote the development of advanced π-CMPs-based organic anodes toward energy storage devices.Gold complexes can generate excimers ([Au2 ]→[Au2 ]*) and exciplexes ([Au3 ]→[Au3 ]*) with light excitation. Four GdIII and YIII complexes were assembled with dimeric [Au(SCN)2 ]- 2 and trimeric [Au(SCN)2 ]- 3 bis(thiocyanato)gold(I) counterions. The vibrational signature associated with the Au⋅⋅⋅Au vibrational mode was probed with ultralow frequency (ULF) Raman spectroscopy as a function of temperature. Emission spectroscopy was used to explore photophysical properties. Two broad features in the high- and low-energy regions were associated with the fluorescence and phosphorescence of the gold entities, respectively. Temperature-dependent luminescence measurements showed that the emission color can be tuned from blue to green via cyan and white. Hence, these complexes can act as colorimetric thermometers. Additionally, a ratiometric thermal sensing ability was incorporated with high sensitivity up to 5 % K-1 in the cryogenic temperature range.