Activity

  • Williams Bonner posted an update 2 weeks ago

    strument to measure the usability of the Eye Donor Aust App. This instrument requires further testing in other groups of people. Usability testing of the Eye Donor Aust app demonstrated that the participants were satisfied with the content and functionality of the app stating that it was well organised, visually appealing and user friendly. This result could translate into more people using the app and thereby increasing their knowledge and attitude towards eye donation as well as registering to become a donor.In coastal marine ecosystems coralline algae often create biogenic reefs. These calcareous algal reefs affect their associated invertebrate communities via diurnal oscillations in photosynthesis, respiration and calcification processes. Little is known about how these biogenic reefs function and how they will be affected by climate change. We investigated the winter response of a Mediterranean intertidal biogenic reef, Ellissolandia elongata exposed in the laboratory to reduced pH conditions (i.e. ambient pH – 0.3, RCP 8.5) together with an extreme heatwave event (+1.4 °C for 15 days). Response variables considered both the algal physiology (calcification and photosynthetic rates) and community structure of the associated invertebrates (at taxonomic and functional level). The combination of a reduced pH with a heatwave event caused Ellisolandia elongata to significantly increase photosynthetic activity. The high variability of calcification that occurred during simulated night time conditions, indicates that there is not a simple, linear relationship between these two and may indicate that it will be resilient to future conditions of climate change. In contrast, the associated fauna were particularly negatively affected by the heatwave event, which impoverished the communities as opportunistic taxa became dominant. Local increases in oxygen and pH driven by the algae can buffer the microhabitat in the algal fronds, thus favouring the survival of small invertebrates.Organophosphate esters (OPEs) are normally used as flame retardants, plasticizers and lubricants, but have become environmental pollutants. Because OPEs are normally present alongside heavy metals in soils, the effects of interactions between OPEs and heavy metals on plant uptake of OPEs need to be determined. In this study, we investigated the effects of OPEs chemical structure, plant cultivar and copper (Cu) on the uptake and translocation of OPEs by plants. The bioaccumulation of OPEs varied among plant cultivars. They were preferentially enriched in carrot, with the lowest concentrations observed in maize. OPEs with electron-ring substituents (ER-OPEs) exhibited a higher potential for root uptake than did OPEs with open-chain substituents (OC-OPEs), which could be attributed to the higher sorption of ER-OPEs onto root charged surfaces. This was explained by the stronger noncovalent interactions with the electron-rich structure of ER-OPEs. The presence of Cu slightly reduced the distinct difference in the ability of roots to take up OC-OPEs and ER-OPEs. This was explained by the interactions of Cu ions with the electron-rich structure of ER-OPEs, which suppressed the sorption of ER-OPEs on the root surface. A negative relationship between the logarithms of the translocation factor and octanol-water partition coefficient (Kow) was observed in treatments with either OPEs only or OPEs + Cu, implying the significant role of hydrophobicity in the OPEs acropetal translocation. The results will improve our understanding of the uptake and translocation of OPEs by plant cultivars as well as how the process is affected by the chemical structure of OPEs and Cu, leading to improvements in the ecological risk assessment of OPEs in the food chain.This review captures the anabolic and stimulatory effects observed with inhibition of the transforming growth factor β superfamily in muscle, blood, and bone. New medicinal substances that rectify activin, myostatin, and growth differentiation factor 11 signaling give hope to the many whose lives are affected by deterioration of these tissues. selleck inhibitor The review first covers the origin, structure, and common pathway of activins, myostatin, and growth differentiation factor 11 along with the pharmacodynamics of the new class of molecules designed to oppose the activin receptor signaling pathway. Current terminology surrounding this new class of molecules is inconsistent and does not infer functionality. Adopting inhibitors of the activin receptor signaling pathway (IASPs) as a generic term is proposed because it encapsulates the molecular mechanisms along the pathway trajectory. To conclude, a pragmatic classification of IASPs is presented that integrates functionality and side effects based on the data available from animals and humans. This provides researchers and clinicians with a tool to tailor IASPs therapy according to the need of projects or patients and with respect to side effects.Textile fabrics inspection is an important part of textile manufacturing industry, more and more new inspections technologies are adopted for the application. Micro CT imaging technology is recently explored for textile material inspection. This paper proposed a method of weft micro-CT image segmentation based on U-Net, by using deep learning theory and X-ray micro-CT nondestructive detection technology to realize automatic segmentation of filamentous objects. Firstly, the weft micro-CT image was obtained by X-ray micro-CT scan, and then the segmentation target was manually divided. A high segmentation accuracy CT image segmentation dataset of textile materials was built for training the network model. Based on the original U-Net, through experimental exploration, the attention mechanism was introduced, and the encoder module, decoder module and loss function module were adjusted, so as to get a good segmentation effect. The experimental results show that the segmentation performance superiority of this proposed algorithm and the Dice similarity coefficient reaches 0.843. The method proposed in this paper provides a direction for the combination of deep learning technology and micro-CT technology in industrial detection.