-
Friedrichsen Bork posted an update 3 weeks, 1 day ago
Incidence of cerebral lesions was significantly higher in patients on NOAC compared with VKA (16% vs. 9.2%, respectively, p = 0.04), and in patients who had intraprocedural cardioversions compared with no cardivoersions (19.5% vs. 10.4%, respectively, p = 0.03). In multivariate analysis, both parameters were found to be independent risk factors for cerebral embolism. No significant difference between interrupted and uninterrupted NOAC administration could be detected. CONCLUSIONS In patients undergoing AF ablation, we identified the use of NOAC and intraprocedural cardioversion as independent risk factors for the occurrence of periprocedural cerebral embolic lesions.Semisynthesis of proteins via expressed protein ligation is a powerful tool to furnish full-length proteins carrying site-specific (posttranslational) modifications. The development of various β-mercapto amino acid building blocks coupled with ligation-desulfurization chemistry enabled further advances in this methodology by alleviating the need for cysteine residues at the desired ligation sites. However, this expansion in the availability of viable ligation sites is sometimes counterbalanced by the inadvertent desulfurization of unprotected native cysteines, which might be of structural and/or functional importance. this website Here, we provide a detailed protocol for using the cysteine-selective protecting group phenacyl (PAc) to achieve precise protein semisynthesis preserving native cysteine residues. The PAc group can be easily installed on cysteine(s) within recombinantly produced protein thioesters, withstands standard ligation, desulfurization and reversed phase HPLC conditions, and can be smoothly removed. We have previously demonstrated the utility of this protecting group through the semisynthesis of two model proteins, human small heat shock protein Hsp27 and Prion protein, in which one or two native cysteines, respectively, were maintained through the ligation-desulfurization sequence.Cyclotides are naturally occurring microproteins (≈30 residues long) present in several families of plants. All cyclotides share a unique head-to-tail circular knotted topology containing three disulfide bridges forming a cystine knot topology. Cyclotides possess high stability to chemical, physical, and biological degradation and have been reported to cross cellular membranes. In addition, naturally occurring and engineered cyclotides have shown to possess various pharmacologically relevant activities. These unique features make the cyclotide scaffold an excellent tool for the design of novel peptide-based therapeutics by using molecular evolution and/or peptide epitope grafting techniques. In this chapter, we provide protocols to recombinantly produce a natively folded cyclotide making use of a standard bacterial expression system in combination with an intein-mediated backbone cyclization with concomitant oxidative folding.α-Synuclein is a small aggregation-prone protein associated with Parkinson’s disease (PD). The protein’s biochemical and biophysical properties can be heavily influenced by various types of posttranslational modification (PTMs) such as phosphorylation, ubiquitination, and glycosylation. To understand the site-specific effects of various PTMs have on the protein and its aggregation, obtaining a homogeneous sample of the protein of interest with the specific modification of interest is key. Expressed protein ligation (EPL) has emerged as robust tool for building synthetic proteins bearing site-specific modifications. Here, we outline our approach for building α-synuclein with site specific O-GlcNAc modifications, an intracellular subtype of glycosylation that has been linked to the inhibition of protein aggregation. More specifically, we provide specific protocols for the synthesis of α-synuclein bearing an O-GlcNAc modification at threonine 72, termed α-synuclein(gT72). However, this general approach utilizing two recombinant fragments and one synthetic peptide is applicable to other sites and types of modifications and should be transferable to various other protein targets, including aggregation prone proteins like tau and TDP-43.The posttranslational modification of cellular proteins by ubiquitin (Ub), called ubiquitylation, is indispensable for the normal growth and development of eukaryotic organisms. In order to conduct studies that elucidate the precise mechanistic roles for Ub, access to site-specifically and homogenously ubiquitylated proteins and peptides is critical. However, the low abundance, heterogeneity, and dynamic nature of protein ubiquitylation are significant limitations toward such studies. Here we provide a facile expressed protein ligation method that does not require specialized apparatus and permits the rapid semisynthesis of ubiquitylated peptides by using the atom-efficient ligation auxiliary 2-aminooxyethanethiol.Nucleosomes, the basic unit of chromatin, contain a protein core of histone proteins, which are heavily posttranslationally modified. These modifications form a combinatorial language which defines the functional state of the underlying genome. As each histone type exists in two copies in a nucleosome, the modification patterns can differ between the individual histones, resulting in asymmetry and increasing combinatorial complexity. To systematically explore the regulation of chromatin regulatory enzymes (writers, erasers, or readers), chemically defined nucleosomes are required. We have developed strategies to chemically modify histones and control nucleosome assembly, thereby enabling the reconstitution of asymmetric histone modification patterns. Here, we report a detailed protocol for the modular assembly of such nucleosomes. Employing a three-segment ligation strategy for the semisynthesis of H3, coupled with the use of the protease cleavable “lnc-tag,” we provide an efficient and traceless method for the controlled semisynthesis and reconstitution of asymmetrically modified nucleosomes.Classical approaches for probing protein phosphorylation events rely on phosphomimicking amino acids or enzymatic phosphorylation of proteins. In many cases, phosphomimicking amino acids inadequately imitate actual protein phosphorylation, whereas the latter method suffers from an inability to control site specificity and stoichiometry. To circumvent these shortcomings, chemical biological approaches have been developed to enable introduction of phosphorylated amino acids into proteins in a reliable and controlled way. Here, we describe methods to make semisynthetic, phosphorylated PDZ domains, covering expressed protein ligation (EPL) strategies involving modifications within the N-terminal or C-terminal regions. We also enclose protocols for the biophysical characterization of the semisynthetic phosphorylated PDZ domains to establish whether the introduced phosphorylation affects protein structure, stability, and function.