Activity

  • White Peele posted an update 1 week, 2 days ago

    BACKGROUND Melatoninergic agents are known to reduce intraocular pressure (IOP). Selleck YD23 The present study was performed to evaluate the effect of nanomicellar formulations of melatoninergic agents on IOP in the rat. METHODS Tonometry was used to measure IOP in eyes instilled with melatonin or agomelatine. Ocular hypertension was induced by the injection of methylcellulose in the anterior chamber. RESULTS Melatonin formulated in nanomicelles had a longer lasting hypotonizing effect on IOP with respect to melatonin in saline. Nanomicellar formulations of melatonin and agomelatine, either alone or in combination, had lowering effects that did not depend on their concentration or their combination, which, however, resulted in an increased duration of the hypotonizing effect. The duration of the lowering effect was further increased by the addition of lipoic acid. CONCLUSIONS We demonstrated the effective hypotonizing activity of melatonin and agomelatine in combination with lipoic acid. Although results in animals cannot be directly translated to humans, the possibility of developing novel therapeutical approaches for patients suffering from hypertensive glaucoma should be considered.This paper presents the results of numerical modelling of the rolling process of aluminum alloy bars in a three-high skew mill. The purpose of the examination was to determine the optimal rolling temperature for this alloy. The numerical examination for aluminum alloy 6005 (AlZn5.5MgCu) was performed using the Forge3®-2D Plane strain state commercial software. The rheological properties of the examined alloy were determined from uniaxial compression tests done using the metallurgical process simulation system Gleeble 3800. The numerical analysis of the process of rolling 6005 alloy bars in a three-high skew mill was conducted within the temperature range of 150-350 °C and at a deformation of 0.29.Cholangiocarcinoma (CCA) is a deadly tumor without an effective therapy. Unique metabolic and bioenergetics features are important hallmarks of tumor cells. Metabolic plasticity allows cancer cells to survive in poor nutrient environments and maximize cell growth by sustaining survival, proliferation, and metastasis. In recent years, an increasing number of studies have shown that specific signaling networks contribute to malignant tumor onset by reprogramming metabolic traits. Several evidences demonstrate that numerous metabolic mediators represent key-players of CCA progression by regulating many signaling pathways. Besides the well-known Warburg effect, several other different pathways involving carbohydrates, proteins, lipids, and nucleic acids metabolism are altered in CCA. The goal of this review is to highlight the main metabolic processes involved in the cholangio-carcinogeneis that might be considered as potential novel druggable candidates for this disease.Aging is a predominant risk factor for the development and progression of cardiovascular complications. Physiologically and anatomically, the heart undergoes numerous changes that result in poor cardiac function in the elderly population. Recently, several studies have provided promising results, confirming the ability of the senescence-accelerated mouse-prone 8 (SAMP8) model to accurately model age-related cardiovascular alterations. In this study, using a murine model of senescence, SAMP8, we aimed to investigate the effect of 3,4-dihydroxybenzalacetone (DBL), a catechol-containing phenylpropanoid derivative isolated from Inonotus obliquus (Chaga), on cardiac aging. DBL was administered at the doses of 10 mg/kg and 20 mg/kg by oral gavage to SAMP8 mice to examine aging-mediated cardiac changes, such as oxidative DNA damage, oxygen radical antioxidant capacity (ORAC) value, fibrosis, inflammation, and apoptosis. The treatment with DBL at both doses significantly reduced aging-mediated oxidative DNA damage, and simultaneously increased the ORAC value in the SAMP8 assay. Cardiac fibrosis was assessed with Azan-Mallory staining, and the number of cardiac remodeling markers was found to be significantly reduced after the treatment with DBL. We also observed a decrease in cardiomyocyte apoptosis as measured by the terminal transferase-mediated dUTP nick end labeling (TUNEL) staining method and the caspase-3 levels in SAMP8 mice compared with senescence-resistant control (SAMR1) mice. The findings from this study suggest that DBL has a potentially beneficial effect on aging-mediated myocardial alterations. Further studies are warranted to confirm the promising potential of this catechol compound against aging-associated myocardial dysfunction.The sustainability of agriculture requires the adoption of agricultural soil conservation practices with positive impacts on soil quality, which can promote beneficial soil microbiota like arbuscular mycorrhizal fungi (AMF) and its diversity. This study aims to assess the influence of the presence of intact extraradical mycelium as a preferential source of inoculum of the native AMF in order to guarantee a better colonization as well as its possible bioprotective effect against Magnaporthiopsis maydis. In order to vary the available extraradical mycelium, two experiments, with and without cover crop, were carried out, in which two tillage systems and two maize varieties were studied. The capitalization of the benefits, in terms of grain production and M. maydis presence, associated to the cover crop were only achieved with minimum tillage. Therefore, both cultural practices are necessary to reduce the fungus presence, coupling the effect of mycorrhization together with other benefits associated with the cover crop. Although in the absence of a cover crop and using conventional tillage, yields and lower levels of M. maydis are possibly achieved, this system is more dependent on the variety used, does not benefit from the advantages associated with the cover crop, is more expensive, and environmentally unsustainable.Neurotrophiс factors play a key role in the development, differentiation, and survival of neurons and nerve regeneration. In the present study, we evaluated the effect of certain neurotrophic factors (NGF, BDNF, and GDNF) on axon growth and migration of Nestin-green fluorescent protein (GFP)-positive cells using a 3D model of dorsal root ganglion (DRG) explant culture in Matrigel. Our method generally represents a convenient model for assessing the effects of soluble factors and therapeutic agents on axon growth and nerve regeneration in R&D studies. By analyzing the DRG explants in ex vivo culture for 21 days, one can evaluate the parameters of neurite outgrowth and the rate of cell migration from the DRG explants into the Matrigel. For the current study, we used Nestin-GFP-expressing mice in which neural precursors express Nestin and the green fluorescent protein (GFP) under the same promoter. We revealed that GDNF significantly (two fold) stimulated axon outgrowth (p less then 0.05), but not BDNF or NGF.