-
Buckley Knapp posted an update 2 weeks, 2 days ago
sclerotiorum. Our study provides a better understanding of how A. thaliana primary and secondary metabolism is modified during infection by a fungal pathogen like S. sclerotiorum that has both hemibiotrophic and necrotrophic stages.G-negative bacteria produce myriad N-acyl-homoserine lactones (AHLs) that can function as quorum sensing (QS) signaling molecules. AHLs are also known to regulate various plant biological activities. p-Coumaroyl-homoserine lactone (pC-HSL) is the only QS molecule produced by a photosynthetic bacterium, Rhodopseudomonas palustris. The role of pC-HSL in the interaction between R. palustris and plant has not been investigated. In this study, we investigated the effect of pC-HSL on plant immunity and found that this QS molecule can induce a systemic resistance to Tobacco mosaic virus (TMV) infection in Nicotiana benthamiana. The results show that pC-HSL treatment can prolong the activation of two mitogen-associated protein kinase genes (i.e., NbSIPK and NbWIPK) and increase the expression of transcription factor WRKY8 as well as immune response marker genes NbPR1 and NbPR10, leading to an increased accumulation of reactive oxygen species (ROS) in the TMV-infected plants. Our results also show that pC-HSL treatment can increase activities of two ROS-scavenging enzymes, peroxidase and superoxide dismutase. Knockdown of NbSIPK or NbWIPK expression in N. benthamiana plants through virus-induced gene silencing nullified or attenuated pC-HSL-induced systemic resistance, indicating that the functioning of pC-HSL relies on the activity of those two kinases. Meanwhile, pC-HSL-pretreated plants also showed a strong induction of kinase activities of NbSIPK and NbWIPK after TMV inoculation. Taken together, our results demonstrate that pC-HSL treatment increases plant resistance to TMV infection, which is helpful to uncover the outcome of interaction between R. palustris and its host plants.Plants recognize pathogen-associated molecular patterns (PAMPs) to activate PAMP-triggered immunity (PTI). However, our knowledge of PTI signaling remains limited. In this report, we introduce Lumi-Map, a high-throughput platform for identifying causative single-nucleotide polymorphisms (SNPs) for studying PTI signaling components. In Lumi-Map, a transgenic reporter plant line is produced that contains a firefly luciferase (LUC) gene driven by a defense gene promoter, which generates luminescence upon PAMP treatment. The line is mutagenized and the mutants with altered luminescence patterns are screened by a high-throughput real-time bioluminescence monitoring system. Selected mutants are subjected to MutMap analysis, a whole-genome sequencing-based method of rapid mutation identification, to identify the causative SNP responsible for the luminescence pattern change. We generated nine transgenic Arabidopsis reporter lines expressing the LUC gene fused to multiple promoter sequences of defense-related genes. These lines generate luminescence upon activation of FLAGELLIN-SENSING 2 (FLS2) by flg22, a PAMP derived from bacterial flagellin. We selected the WRKY29-promoter reporter line to identify mutants in the signaling pathway downstream of FLS2. After screening 24,000 ethylmethanesulfonate-induced mutants of the reporter line, we isolated 22 mutants with altered WRKY29 expression upon flg22 treatment (abbreviated as awf mutants). Although five flg22-insensitive awf mutants harbored mutations in FLS2 itself, Lumi-Map revealed three genes not previously associated with PTI. Lumi-Map has the potential to identify novel PAMPs and their receptors as well as signaling components downstream of the receptors.[Formula see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.Macroautophagy/autophagy is a conserved catabolic pathway that targets cytoplasmic components for their degradation and recycling in an autophagosome-dependent lysosomal manner. Under physiological conditions, this process maintains cellular homeostasis. However, autophagy can be stimulated upon different forms of cellular stress, ranging from nutrient starvation to exposure to drugs. Thus, this pathway can be seen as a central component of the integrated and adaptive stress response. Here, we report that even brief induction of autophagy is coupled in vitro to a persistent downregulation of the expression of MAP1LC3 isoforms, which are key components of the autophagy core machinery. In fact, DNA-methylation mediated by de novo DNA methyltransferase DNMT3A of MAP1LC3 loci upon autophagy stimulation leads to the observed long-term decrease of MAP1LC3 isoforms at transcriptional level. Finally, we report that the downregulation of MAP1LC3 expression can be observed in vivo in zebrafish larvae and mice exposed teq Global Run-On sequencing; MAP1LC3/LC3 microtubule-associated protein 1 light chain 3; MAP1LC3A microtubule-associated protein 1 light chain 3 alpha; MAP1LC3B microtubule-associated protein 1 light chain 3 beta; MAP1LC3B2 microtubule-associated protein 1 light chain 3 beta 2; MEM minimum essential medium; MEF mouse embryonic fibroblasts; mRNA messenger RNA; MTOR mechanistic target of rapamycin kinase; PBS phosphate-buffered saline; PIK3C3 phosphatidylinositol 3-kinase catalytic subunit type 3; RB1CC1/FIP200 RB1 inducible coiled-coil 1; RT-qPCR quantitative reverse transcription polymerase chain reaction; SQSTM1/p62 sequestosome 1; Starv. starvation; Treh. trehalose; ULK1 unc-51 like autophagy activating kinase 1.Anaplerosis and the associated mitochondrial metabolite transporters generate unique cytosolic metabolic signaling molecules that can regulate insulin release from pancreatic β-cells. It has been shown that mitochondrial metabolites, transported by the citrate carrier (CIC), dicarboxylate carrier (DIC), oxoglutarate carrier (OGC), and mitochondrial pyruvate carrier (MPC) play a vital role in the regulation of glucose-stimulated insulin secretion (GSIS). Metabolomic studies on static and biphasic insulin secretion, suggests that several anaplerotic derived metabolites, including α-ketoglutarate (αKG), are strongly associated with nutrient regulated insulin secretion. Support for a role of αKG in the regulation of insulin secretion comes from studies looking at αKG dependent enzymes, including hypoxia-inducible factor-prolyl hydroxylases (PHDs) in clonal β-cells, and rodent and human islets. This review will focus on the possible link between defective anaplerotic-derived αKG, PHDs, and the development of type 2 diabetes (T2D).Natural products of herbal origin are prodigious to display diverse pharmacological activities. In the present study, five guaiane-type sesquiterpene dimers, xylopidimers A - E (1-5), isolated from Xylopia vielana species were tested against COX-2 protein target (PDB 1CX2), a potent target for anti-inflammatory agents. To better understand the pharmacological properties of all these compounds, in this work, a systemic in silico study was performed on xylopidimers A-E using molecular docking, ADMET analysis and MD simulations. During ADMET predictions the two compounds xylopidimer C, D displayed best results as compared to others. The compound xylopidimer C was further evaluated for its MD simulations and its molecular interactions with COX2 complex showed clear interactions with active gorge of the enzyme through hydrogen bonding as well as hydrophobic contacts. The xylopidimer C has shown the best binding potential with -10.57Kcal/mol energy with 17.92 nano molar of predicted inhibition constant better than Ibuprofen and Felbinac. These findings provide enough significant information for designing and developing novel targeted base anti-inflammatory drugs from guaiane dimers.Adipose tissue inflammation plays an important role in the regulation of glucose and lipids metabolism. It is unknown whether Ursolic acid (UA) could regulate adipose tissue inflammation, though it can regulate inflammation in many other tissues. In this study, 3T3-L1 adipocytes, DIO mice and lean mice were treated with UA or vehicle. Gene expression of inflammatory factors, chemokines and immune markers in adipocytes and adipose tissue, cytokines in cell culture medium and serum, and inflammation regulatory pathways in adipocytes were detected. Results showed that UA increased the expression of interleukins and chemokines, but not TNFα, in both adipocytes and adipose tissue. IL6 and MCP1 levels in the cell culture medium and mouse serum were induced by UA treatment. Cd14 expression level and number of CD14+ monocytes were higher in UA treated adipose tissue than those in the control group. Glucose tolerance test was impaired by UA treatment in DIO mice. Mechanistically, UA induced the expression of Tlr4 and the phosphorylation levels of ERK and NFκB in adipocytes. In conclusion, our study indicated that short-term UA administration could induce CD14+ monocytes infiltration by increasing the production of interleukins and chemokines in mouse adipose tissue, which might further impair glucose tolerance test.Background Metabolic syndrome (MetS) and Parkinson’s disease (PD) share common pathophysiological mechanisms. This study aimed to investigate the influence of MetS on PD incidence. Materials and Methods A propensity score-matched cohort study was conducted using the National Health Insurance Service-National Health Screening Cohort (NHIS-HealS) data (2002-2015) from the Korean National Health Insurance Service. Individuals with MetS were identified from those who underwent a health checkup in 2009-2010 and were 11 matched to individuals without MetS (non-MetS) using the propensity score method. Among 314,737 eligible individuals, 85,530 MetS and non-MetS pairs were selected. Results During a mean follow-up of 7.23 years, 819 (0.48%) PD cases occurred. Individuals with MetS exhibited 1.23 times greater PD incidence (95% confidence interval [CI], 1.06-1.43; P = 0.006). Cyclophosphamide The risk of PD increased with the number of MetS components, with the presence of five MetS components altogether doubling the incidence of PD (odds ratio [OR], 2.00; 95% CI, 1.30-3.04; P = 0.001). High blood pressure, low high-density lipoprotein cholesterol, and high fasting blood glucose increased PD incidence by 1.34 times (95% CI, 1.15-1.58; P less then 0.001), 1.31 times (95% CI, 1.13-1.52; P less then 0.001), and 1.20 times (95% CI, 1.04-1.38; P = 0.013), respectively. Elevated waist circumference was not associated with PD incidence (OR, 1.11; 95% CI, 0.96-1.28; P = 0.176). High triglycerides exerted a protective effect against PD incidence especially in men (OR, 0.66; 95% CI, 0.54-0.81; P less then 0.001). Conclusions MetS may be a risk factor for PD incidence, and individual components of MetS exert different effects depending on sex.
The anatomic-based TNM classification is considered the benchmark in cancer staging and has been regularly updated since its inception. In the current era of precision medicine, the added intention for future TNM modifications is to heighten its impact in the more ‘personalized’ level of cancer care. In urologic cancers, this goal may be achieved by incorporating ‘non-anatomic’ factors into TNM, such as biomarkers (e.g. gene alterations, molecular subtypes, genomic classifiers) and risk assessment models (e.g. nomogram, look-up table), while maintaining the anatomic extent as the foundation of staging. These different prognosticators can be combined and integrated, may serve as substratifiers for T, N, or M categories, and perhaps, incorporated as elements in TNM stage groupings to enhance their prognostic capability in urologic cancers.
This review highlights candidate biomarkers and risk assessment models that can be explored to potentially improve TNM prognostication of bladder, prostate, kidney, and testicular cancers.