Activity

  • Futtrup Bynum posted an update 3 days, 4 hours ago

    o that the species can be formally described.Algal oil is rich in docosahexaenoic acid (DHA) and has various health benefits against human metabolic disorders and disease. This study aimed to investigate the effects of DHA algal oil on colonic inflammation and intestinal microbiota in dextran sulfate sodium (DSS)-induced colitis mice model. Male C57BL/6 mice was induced colitis by 2.5% DSS and followed by 2 weeks of treatment with algal oil (250 or 500 mg/kg/day). The colonic inflammation was assessed by colon macroscopic damage scores, and the degree of neutrophil infiltration was evaluated by measuring tissue-associated myeloperoxidase (MPO) activity in colonic mucosa. Tight junction proteins in the colonic tissue were measured by real-time PCR and western blot. Moreover, the intestinal microbiota and shot chain fatty acids (SCFAs) were estimated by bioinformatic analysis and GC, respectively. Colonic damage due to DSS treatment was significantly ameliorated by algal oil supplementation. In addition, algal oil significantly inhibited the increases of malondialdehyde (MDA) content, MPO activity, pro-inflammatory cytokines level and tight junction proteins expression in DSS-treated mice. Furthermore, supplementation of algal oil modulated the intestinal microbiota structure in DSS induced colitis mice by increasing the proportion of the unidentified_S24_7 and decreasing the relative abundance of unidentified_Ruminococcaceae, Clostridium and Roseburia. On the analysis of SCFAs, the caecal content of acetic acid, propionic acid, isobutyric acid, buturic, and the total SCFAs showed a significant increase in algal oil-administered mice. Together, these results suggested that algal oil rich in DHA inhibited the progress of DSS-induced colitis in mice by modulating the intestinal microbiota and metabolites and repairing the intestinal barrier, which may be applied in the development of therapeutics for intestinal inflammation.Anaerobic digestion is used for the treatment of animal manure by generating biogas. Cyclopamine supplier Heavy metals cause environmental pollutions and co-select for antimicrobial resistance. We evaluated the impact of mesophilic anaerobic digestion of cattle manure (CM), swine manure (SM) and poultry litter (PL) on the concentrations of seven tetracycline [tet(A), tet(B), tet(G), tet(M), tet(O), tet(Q), and tet(W)], macrolide [erm(B)], methicillin (mecA and mecC), copper (copB, pcoA, pcoD, and tcrB) and zinc (czrC) resistance genes, and three bacterial species (E. coli, Enterococcus spp. and Staphylococcus aureus). The total bacterial population and total abundance of the seven tet genes significantly increased in the three manure types after digestion. Concentration of tet(M) was strongly correlated with that of erm(B) and enterococci. As concentration of tetracyclines declined during anaerobic digestion, that of four tet genes (A, B, Q, and W) and 16S rRNA increased, that of tet(M) decreased, and that of tet(G) and tet(O) diof heavy metal resistance genes either increased or remained unaffected depending on the animal species. This study showed the need for post-digestion treatments of animal manure to remove bacteria, antibiotic resistance genes, heavy metals and their resistance genes.To investigate the effect of yeasts on Kazak cheese quality and flavor, three isolated yeasts (Kluyveromyces marxianus A2, Pichia kudriavzevii A11, and Pichia fermentans A19) were used to ferment cheeses and designated as StC, LhC, and WcC, respectively. The cheese fermented with a commercial lactic acid starter without adding yeast was used as control named LrC. The results showed that the texture of cheese added with yeasts were more brittle. K. marxianus A2 contributed to the formation of free amino acids and organic acids, especially glutamate and lactic acid. Moreover, K. marxianus A2 provides cheese with onion, oily, and floral aromas. Furthermore, P. kudriavzevii A11 promotes a strong brandy, herbaceous, and onion flavor. Although no significant aroma change was observed in PfC, it promoted the production of acetic acid, isoamyl acetate, and phenethyl acetate. These results indicate that yeasts are important auxiliary starters for cheese production.The proper functioning of many proteins requires their transport to the correct cellular compartment or their secretion. Signal recognition particle (SRP) is a major protein transport pathway responsible for the co-translational movement of integral membrane proteins as well as periplasmic proteins. Deinococcus radiodurans is a ubiquitous bacterium that expresses a complex phenotype of extreme oxidative stress resistance, which depends on proteins involved in DNA repair, metabolism, gene regulation, and antioxidant defense. These proteins are located extracellularly or subcellularly, but the molecular mechanism of protein localization in D. radiodurans to manage oxidative stress response remains unexplored. In this study, we characterized the SRP complex in D. radiodurans R1 and showed that the knockdown (KD) of the SRP RNA (Qpr6) reduced bacterial survival under hydrogen peroxide and growth under chronic ionizing radiation. Through LC-mass spectrometry (MS/MS) analysis, we detected 162 proteins in the periplasm of wild-type D. radiodurans, of which the transport of 65 of these proteins to the periplasm was significantly reduced in the Qpr6 KD strain. Through Western blotting, we further demonstrated the localization of the catalases in D. radiodurans, DR_1998 (KatE1) and DR_A0259 (KatE2), in both the cytoplasm and periplasm, respectively, and showed that the accumulation of KatE1 and KatE2 in the periplasm was reduced in the SRP-defective strains. Collectively, this study establishes the importance of the SRP pathway in the survival and the transport of antioxidant proteins in D. radiodurans under oxidative stress.Cold seep ecosystems are developed from methane-rich fluids in organic rich continental slopes, which are the source of various dense microbial and faunal populations. Extensive studies have been conducted on microbial populations in this unique environment; most of them were based on DNA, which could not resolve the activity of extant organisms. In this study, RNA and DNA analyses were performed to evaluate the active archaeal and bacterial communities and their network correlations, particularly those participating in the methane cycle at three sites of newly developed cold seeps in the northern South China Sea (nSCS). The results showed that both archaeal and bacterial communities were significantly different at the RNA and DNA levels, revealing a higher abundance of methane-metabolizing archaea and sulfate-reducing bacteria in RNA sequencing libraries. Site ROV07-01, which exhibited extensive accumulation of deceased Calyptogena clam shells, was highly developed, and showed diverse and active anaerobic archaeal methanotrophs (ANME)-2a/b and sulfate-reducing bacteria from RNA libraries.