Activity

  • Jensen Rosales posted an update 1 week, 5 days ago

    Exposure to second-hand smoke (SHS) is an important public health problem. We assessed SHS exposure in restaurants and bars across the European Union (EU) and studied associations with country-level smoke-free legislation. Data of Eurobarometer surveys 2014 and 2017 were used to estimate country-specific prevalence of observing smoking in restaurants and bars, which can be considered a marker of SHS exposure. Additionally, we used multilevel logistic regression models to study associations with comprehensiveness of national smoke-free regulations in restaurants and bars, which were derived from the Tobacco Control Scale. In total, 44,809 people from all 28 EU member states were included in the analysis. The results of the multilevel logistic analysis show that in countries with complete and extensive bans, respondents were less likely to have observed people smoking inside restaurants than in countries with partial bans, which represented the lowest level of smoke-free policy implementation (OR 0.24, 95%CI 0.10-0.57 for complete ban and OR 0.23, 95%CI 0.10-0.54 for incomplete but extensive ban). Also, the prevalence of seeing people smoking in a bar was lower in the countries with an extensive ban (OR 0.23 95%CI 0.11-0.45) and with a complete ban (OR 0.20 95%CI 0.10-0.40). Between 2014 and 2017, SHS exposure in restaurants and bars decreased significantly. Our results confirm that in countries with extensive or complete smoking bans, people were less exposed to SHS in restaurants and bars; and that partial bans are less effective in reducing SHS exposure.There is an increasing concern over the harmful effects that metallic nanoparticles (NP) may produce on human health. Due to their redox properties, nickel (Ni) and Ni-containing NP are particularly relevant. Hence, the aim of this study was to establish the toxicological mechanisms in the cardiorespiratory oxidative metabolism initiated by an acute exposure to Ni-doped-NP. Mice were intranasally instilled with silica NP containing Ni (II) (Ni-NP) (1 mg Ni (II)/kg body weight) or empty NP as control, and 1 h after exposure lung, plasma, and heart samples were obtained to assess the redox metabolism. Results showed that, NP were mainly retained in the lungs triggering a significantly increased tissue O2 consumption rate, leading to Ni-NP-increased reactive oxygen species production by NOX activity, and mitochondrial H2O2 production rate. Erastin price In addition, an oxidant redox status due to an altered antioxidant system showed by lung GSH/GSSG ratio decreased, and SOD activity increased, resulting in an increased phospholipid oxidation. Activation of circulating polymorphonuclear leukocytes, along with GSH/GSSG ratio decreased, and phospholipid oxidation were found in the Ni-NP-group plasma samples. Consequently, in distant organs such as heart, Ni-NP inhalation alters the tissue redox status. Our results showed that the O2 metabolism analysis is a critical area of study following Ni-NP inhalation. Therefore, this work provides novel data linking the redox metabolisms alterations elicited by exposure to Ni (II) adsorbed to NP and cardiorespiratory toxicity.Nonalcoholic steatohepatitis (NASH) causes liver extracellular matrix (ECM) remodeling and is a risk factor for fibrosis and hepatocellular carcinoma (HCC). Microcystin-LR (MCLR) is a hepatotoxin produced by fresh-water cyanobacteria that causes a NASH-like phenotype, liver fibrosis, and is also a risk factor for HCC. The focus of the current study was to investigate and compare hepatic recovery after cessation of MCLR exposure in healthy versus NASH animals. Male Sprague-Dawley rats were fed either a control or a high fat/high cholesterol (HFHC) diet for eight weeks. Animals received either vehicle or 30 μg/kg MCLR (i.p 2 weeks, alternate days). Animals were euthanized at one of three time points at the completion of the MCLR exposure period and after 2 and 4 weeks of recovery. Histological staining suggested that after four weeks of recovery the MCLR-exposed HFHC group had less steatosis and more fibrosis compared to the vehicle-exposed HFHC group and MCLR-exposed control group. RNA-Seq analysis revealed dysregulation of ECM genes after MCLR exposure in both control and HFHC groups that persisted only in the HFHC groups during recovery. After 4 weeks of recovery, MCLR hepatotoxicity in pre-existing NASH persistently dysregulated genes related to cellular differentiation and HCC. These data demonstrate impaired hepatic recovery and persistent carcinogenic changes after MCLR toxicity in pre-existing NASH.Cassava (Manihotesculenta Crantz) is one of the most important root crops in tropical countries. It is a major source of cyanogenic glycosides viz. linamarin and lotaustralin, and these on breakdown liberate HCN and ketone. Cassava cyanide extract (CCE) from cassava leaves and tuber rinds were formulated as a biopesticide against certain borer insect pests of horticultural crops. Adenocarcinomic human alveolar basal epithelial cells (A549) were treated with three different concentrations (100, 200, 400 ppm) of CCE. The MTT and NRU assays showed dose-dependent cytotoxicity. The DCFH-DA assay does not show any free radical scavenging activity, whereas the NRR assay showed a reduction in the nitrile radicals with an increase in the concentration of the bioactive compound. A negative correlation was found between the concentration of the bioactive principles and mitochondrial and lysosomal functions. Various cellular assays demonstrated the cellular response of the CCE, and it was found that at higher concentration (400 ppm), the CCE exert a significant necrotic cell death rather than apoptosis. The results of the study indicated that the CCE have a remarkable tendency of anti-proliferative ability.Cannabidiol (CBD) is a major non-euphoric cannabis-derived compound that has become popular in its over-the-counter use. CBD possesses low affinity for cannabinoid receptors, while the primary molecular target(s) by which it mediates biological activity remain poorly defined. Individuals commonly self-medicate using CBD products with little knowledge of its specific immunopharmacological effects on the human immune system; however, research has established primarily in rodent models that CBD possesses immune modulating properties. The objective of this study was to evaluate whether CBD modulates the innate immune response by human primary monocytes activated through toll-like receptors (TLR) 1-9. Monocytes were activated through each TLR and treated with CBD (0.5-10 μM) for 22 h. Monocyte secretion profiles for 13 immune mediators were quantified including IL-4, IL-2, IP-10, IL-1β, TNFα, MCP-1, IL-17a, IL-6, IL-10, IFNγ, IL-12p70, IL-8, and TGF-β1. CBD treatment significantly suppressed secretion of proinflammatory cytokine IL-1β by monocytes activated through most TLRs, apart from TLRs 3 and 8. Additionally, CBD treatment induced significant modulation of IL-6 production by monocytes activated through most TLRs, except for TLRs 1 and 3. Most other monocyte-derived factors assayed were refractory to CBD modulation. Overall, CBD selectively altered monocyte-derived IL-1β and IL-6 when activated through most TLRs. This study is of particular importance as it provides a direct and comprehensive assessment of the effects of CBD on TLR-activated primary human monocytes at a time when CBD containing products are being widely used by the public.This study investigated the effects of anaerobic digestion duration on methane yield, net energy production, and humification of compost during solid state anaerobic digestion (SSAD) and composting hybrid process for food waste treatment. Carbon flow and balance were used to evaluate organic methanation and humification inclination of carbon in the whole SSAD and aerobic composting system. Results showed that SSAD for 15 (AD-15) and 21 days (AD-21) could increase net energy production and degraded organic matter contained in the mixtures to achieve high biological stability. The cumulative net energy production between the AD-15 and AD-21 treatments was not significantly different, which was 8.3% higher than that in SSAD for 30 days (AD-30). Furthermore, digestate (AD-15 and AD-21) composting for 3 days reached maturity and absence of phytotoxic substances. Carbon fixed into humus of the AD-21 treatment (11.6%) was not significantly different from that of AD-15 (12.0%). However, the total amount of carbon fixed into compost in AD-15 was 6.6% higher than that in AD-21. Moreover, the CO2 -C loss of the AD-15 treatment (22.9%) was slightly higher than that of AD-21 (20.6%). Thus, AD-21 treatment achieved the most effective use of carbon during SSAD and composting hybrid process for food waste treatment. These results could provide valuable insights for the effective management of food waste in practice.Atmospheric particles are important reaction vessels for multiphase chemistry. We conducted a meta-analysis of previous field observations in various environments (includes ocean, urban and rural regions), showing that particle hygroscopicity inhomogeneity (PHI) is ubiquitous for the continental atmospheric particles, in which a considerable part of the particulate matters is hydrophobic (10%-33% on average). However, the effects of PHI in quantifying the uptake process of reactive gases are still unclear. link2 Here, taking N2O5 uptake as an example, we showed that using a laboratory-based parameterization scheme without considering the PHI might result in a misestimation of uptake rate coefficient, especially under low ambient relative humidity (RH). Such misestimation may be caused by the differences of the uptake coefficients, as well as the proportion of surface area concentration (SA) between hydrophilic and hydrophobic particles. We suggested that the PHI should be well-considered in establishing the reactive traces gases heterogeneous uptake parameterizations to represent the real atmospheric conditions better.Integrating disruptive technologies within smart cities improves the infrastructure needed to potentially deal with disasters. This paper provides a perspective review of disruptive technologies such as the Internet of Things (IoT), image processing, artificial intelligence (AI), big data and smartphone applications which are in use and have been proposed for future improvements in disaster management of urban regions. The key focus of this paper is exploring ways in which smart cities could be established to harness the potential of disruptive technologies and improve post-disaster management. link3 The key questions explored are a) what are the gaps or barriers to the utilization of disruptive technologies in the area of disaster management and b) How can the existing methods of disaster management be improved through the application of disruptive technologies. To respond to these questions, a novel framework based on integrated approaches based on big data analytics and AI is proposed for developing disaster management solutions using disruptive technologies.The aims of this article were to study the effect of Fenton pretreatment and bacterial inoculation on cellulose-degrading genes and fungal communities during rice straw composting. The rice straw was pretreated by Fenton reactions and functional bacterial agents were then inoculated during the cooling phase of composting. Three treatment groups were carried out, the control (CK), Fenton pretreatment (FeW) and Fenton pretreatment and bacterial inoculation (FeWI). The results indicated that Fenton pretreatment and bacterial inoculation changed the fungal communities composition and increased fungal diversity, leading to changes in the cellulose-degrading genes. In addition, a network analysis showed that in the FeWI treatment, the fungi from modules 1, 5 and 8 were core hosts of the cellulose-degrading genes driving the cellulosic degradation. Moreover, Fenton pretreatment and bacterial inoculation changed the core module fungal communities and strengthened the correlation between the core fungi and the cellulose-degrading genes, thereby promoting cellulosic degradation.