Activity

  • Galbraith Thygesen posted an update 1 week, 1 day ago

    fight stress generated by oxidants. Here, we report a new mechanism used by E. faecalis to sense heme and trigger the synthesis of a heme efflux pump that balances the amount of heme inside the bacteria. We show in a mouse model that E. faecalis uses this mechanisms within the gastrointestinal tract.While the early stages of biofilm formation have been well characterized, less is known about the requirements for Pseudomonas aeruginosa to maintain a mature biofilm. We utilized a P. aeruginosa-phage interaction to identify rmcA and morA, two genes which encode bis-(3′,5′)-cyclic dimeric GMP (c-di-GMP)-degrading phosphodiesterases (PDEs) and are important for the regulation of biofilm maintenance. Deletion of these genes initially results in an elevated biofilm phenotype characterized by increased production of c-di-GMP, Pel polysaccharide, and/or biofilm biomass. In contrast to the wild-type strain, these mutants were unable to maintain the biofilm when exposed to carbon-limited conditions. The susceptibility to nutrient limitation, as well as subsequent loss of biofilm viability of these mutants, was phenotypically reproduced with a stringent response mutant (ΔrelA ΔspoT), indicating that the ΔrmcA and ΔmorA mutants may be unable to appropriately respond to nutrient limitation. Genetic and biochemical datemain opaque. We found that P. aeruginosa requires two phosphodiesterases, RmcA and MorA, to maintain a mature biofilm and that biofilms lacking these PDEs succumb to nutrient limitation and die. SNX-5422 The biofilm maintenance deficiency observed in ΔrmcA and ΔmorA mutants was also found in the stringent response-defective ΔrelA ΔspoT strain, suggesting that a regulatory intersection between c-di-GMP signaling, extracellular polysaccharide biosynthesis, and the nutrient limitation response is important for biofilm persistence. We uncover components of an important regulatory system needed for P. aeruginosa biofilms to persist in nutrient-poor conditions and provide some of the first evidence that maintaining a mature biofilm is an active process.CsrA is a posttranscriptional global regulator in Vibrio cholerae Although CsrA is critical for V. cholerae survival within the mammalian host, the regulatory targets of CsrA remain mostly unknown. To identify pathways controlled by CsrA, RNA-seq transcriptome analysis was carried out by comparing the wild type and the csrA mutant grown to early exponential, mid-exponential, and stationary phases of growth. This enabled us to identify the global effects of CsrA-mediated regulation throughout the V. cholerae growth cycle. We found that CsrA regulates 22% of the V. cholerae transcriptome, with significant regulation within the gene ontology (GO) processes that involve amino acid transport and metabolism, central carbon metabolism, lipid metabolism, iron uptake, and flagellum-dependent motility. Through CsrA-RNA coimmunoprecipitation experiments, we found that CsrA binds to multiple mRNAs that encode regulatory proteins. These include transcripts encoding the major sigma factors RpoS and RpoE, which may explain and rapidly alter gene expression. Global regulators, including CsrA, play an integral role in altering the expression of a large number of genes to promote adaptation and survival, which is required for intestinal colonization. We used transcriptomics and a directed CsrA-RNA coimmunoprecipitation to characterize the CsrA regulon and found that CsrA alters the expression of more than 800 transcripts in V. cholerae Processes regulated by CsrA include motility, the rugose phenotype, and virulence pathways. CsrA directly binds to the aphA transcript and positively regulates the production of the virulence regulator AphA. Thus, CsrA regulates multiple processes that have been linked to pathogenesis.The C-terminal (CT) toxin domains of contact-dependent growth inhibition (CDI) CdiA proteins target Gram-negative bacteria and must breach both the outer and inner membranes of target cells to exert growth inhibitory activity. Here, we examine two CdiA-CT toxins that exploit the bacterial general protein secretion machinery after delivery into the periplasm. A Ser281Phe amino acid substitution in transmembrane segment 7 of SecY, the universally conserved channel-forming subunit of the Sec translocon, decreases the cytotoxicity of the membrane depolarizing orphan10 toxin from enterohemorrhagic Escherichia coli EC869. Target cells expressing secYS281F and lacking either PpiD or YfgM, two SecY auxiliary factors, are fully protected from CDI-mediated inhibition either by CdiA-CTo10EC869 or by CdiA-CTGN05224, the latter being an EndoU RNase CdiA toxin from Klebsiella aerogenes GN05224 that has a related cytoplasm entry domain. RNase activity of CdiA-CTGN05224 was reduced in secYS281F target cells and absent in secarget cell membranes. This work lays the foundation for understanding how CDI toxins interact with the protein export machinery and has direct relevance to development of new antibiotics that can penetrate bacterial cell envelopes.Antibiotic exposure early in life and other practices impacting the vertical transmission and ordered assembly of a diverse and balanced gut microbiota are associated with a higher risk of immunological and metabolic disorders such as asthma and allergy, autoimmunity, obesity, and susceptibility to opportunistic infections. In this study, we used a model of perinatal exposure to the broad-spectrum antibiotic ampicillin to examine how the acquisition of a dysbiotic microbiota affects neonatal immune system development. We found that the resultant dysbiosis imprints in a manner that is irreversible after weaning, leading to specific and selective alteration of the colonic CD4+ T-cell compartment. In contrast, colonic granulocyte and myeloid lineages and other mucosal T-cell compartments are unaffected. Among colonic CD4+ T cells, we observed the most pronounced effects on neuropilin-negative, RORγt- and Foxp3-positive regulatory T cells, which are largely absent in antibiotic-exposed mice even as they reach aducreasingly exposed to antibiotics, both deliberately for therapeutic purposes, and as a consequence of transmaternal exposure. We show here using a model of ampicillin administration to lactating dams during their newborn offspring’s early life that such exposures have consequences that persist into adulthood. Offspring acquire their mother’s antibiotic-impacted microbiota, which compromises their ability to generate a colonic pool of CD4+ T cells, particularly of colonic regulatory T cells. This Treg deficiency cannot be corrected by cohousing with normal mice later and is recapitulated by reconstitution of germfree mice with microbiota harvested from antibiotic-exposed donors. As a consequence of their dysbiosis, and possibly of their Treg deficiency, antibiotic-impacted offspring generate dysregulated Th1 responses to bacterial challenge infection and develop more severe symptoms of ovalbumin-induced anaphylaxis.