-
Blackwell Ejlersen posted an update 4 months, 1 week ago
The impact of drug-drug interactions (DDI) between ritonavir-boosted lopinavir (LPV-r) to treat patients with coronavirus disease 2019 (COVID-19) and commonly used drugs in clinical practice is not well-known. Thus, we evaluated the rate and severity of DDI between LPV-r for COVID-19 treatment and concomitant medications. This was a cross-sectional study including all individuals diagnosed of SARS-CoV-2 infection treated with LPV-r and attended at a single center in Southern Spain (March 1st to April 30th, 2020). The frequency [95% confidence interval (95% CI)] of potential and major DDI were calculated. Overall, 469 patients were diagnosed of COVID-19, 125 (27%) of them were prescribed LPV-r. LPV-r had potential DDI with concomitant medications in 97 (78%, 95% CI 69-85%) patients, and in 33 (26%, 95% CI 19-35%) individuals showed major DDI. Twelve (36%) patients with major DDI and 14 (15%) individuals without major DDI died (p = 0.010). After adjustment, only the Charlson index was independently associated with death [adjusted OR (95% CI) for Charlson index ≥ 5 85 (10-731), p less then 0.001]. LPV-r was discontinued due to side effects in 31 (25%) patients. Management by the Infectious Diseases Unit was associated with a lower likelihood of major DDI [adjusted odds ratio (95% CI) 0.14 (0.04-0.53), p = 0.003). In conclusion, a high frequency of DDI between LPV-r for treating COVID-19 and concomitant medications was found, including major DDI. Patients with major DDI showed worse outcomes, but this association was explained by the older age and comorbidities. Patients managed by the Infectious Diseases Unit had lower risk of major DDI.The UK Biobank is collecting extensive data on health-related characteristics of over half a million volunteers. The biological samples of blood and urine can provide valuable insight on kidney function, with important links to cardiovascular and metabolic health. Further information on kidney anatomy could be obtained by medical imaging. In contrast to the brain, heart, liver, and pancreas, no dedicated Magnetic Resonance Imaging (MRI) is planned for the kidneys. An image-based assessment is nonetheless feasible in the neck-to-knee body MRI intended for abdominal body composition analysis, which also covers the kidneys. In this work, a pipeline for automated segmentation of parenchymal kidney volume in UK Biobank neck-to-knee body MRI is proposed. The underlying neural network reaches a relative error of 3.8%, with Dice score 0.956 in validation on 64 subjects, close to the 2.6% and Dice score 0.962 for repeated segmentation by one human operator. The released MRI of about 40,000 subjects can be processed within one day, yielding volume measurements of left and right kidney. Algorithmic quality ratings enabled the exclusion of outliers and potential failure cases. The resulting measurements can be studied and shared for large-scale investigation of associations and longitudinal changes in parenchymal kidney volume.The surface film on pure magnesium and two aluminium-containing magnesium alloys was characterised after 96 h at 95% RH and 22 °C. The concentration of CO2 was carefully controlled to be either 0 or 400 ppm. The exposed samples were investigated using X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and electron microscopy. The results showed that when the alloys were exposed to the CO2-containing environment, aluminium cations (Al3+) was incorporated into a layered surface film comprising a partially “hydrated” MgO layer followed by Mg(OH)2, and magnesium hydroxy carbonates. The results indicated that aluminium-containing magnesium alloys exhibited considerably less localised corrosion in humid air than pure magnesium. Localised corrosion in the materials under investigation was attributed to film thinning by a dissolution/precipitation mechanism.Optical fibers have been utilized in various fields owing to their superior guiding performance. However, the modification of optical properties and light manipulation in fibers are restricted by the limitation of the core and cladding materials. In addition, the spot size of the light is constrained by the diffraction limit. In this study, we propose an all-dielectric metalens patterned on the facet of a photonic crystal fiber. The metasurface, which contains Si pillars, satisfies the required phase diagram for focusing light with high transmission. The proposed metalens has a focal length of 30 µm and achieves an outstanding efficiency of up to 88% at a wavelength of 1.55 µm, which is approximately 5 times higher than that of a metal-based metalens. We believe that this scheme may pave the way for in-fiber metasurface applications.The thermodynamic surface properties and Lewis acid-base constants of H-β-zeolite supported rhodium catalysts were determined by using the inverse gas chromatography technique at infinite dilution. The effect of the temperature and the rhodium percentage supported by zeolite on the acid base properties in Lewis terms of the various catalysts were studied. The dispersive component of the surface energy of Rh/H-β-zeolite was calculated by using both the Dorris and Gray method and the straight-line method. We highlighted the role of the surface areas of n-alkanes on the determination of the surface energy of catalysts. To this aim various molecular models of n-alkanes were tested, namely Kiselev, cylindrical, Van der Waals, Redlich-Kwong, geometric and spherical models. An important deviation in the values of the dispersive component of the surface energy [Formula see text] determined by the classical and new methods was emphasized. A non-linear dependency of [Formula see text] with the specific surface area of entage and the specific surface area of the catalysts.Rumen microbiota play a key role in the digestion and utilization of plant materials by the ruminant species, which have important implications for greenhouse gas emission. Yet, little is known about the key taxa and potential gene functions involved in the digestion process. Brigatinib Here, we performed a genome-centric analysis of rumen microbiota attached to six different lignocellulosic biomasses in rumen-fistulated cattle. Our metagenome sequencing provided novel genomic insights into functional potential of 523 uncultured bacteria and 15 mostly uncultured archaea in the rumen. The assembled genomes belonged mainly to Bacteroidota, Firmicutes, Verrucomicrobiota, and Fibrobacterota and were enriched for genes related to the degradation of lignocellulosic polymers and the fermentation of degraded products into short chain volatile fatty acids. We also found a shift from copiotrophic to oligotrophic taxa during the course of rumen fermentation, potentially important for the digestion of recalcitrant lignocellulosic substrates in the physiochemically complex and varying environment of the rumen.