-
Bruce Krarup posted an update 1 month ago
This technology facilitates deeper and holistic insights into the metabolic function of the gut microbiome (Metabolomic Workbench Study ID ST001651).The first syntheses of the isomeric dioxafenestrene natural products (-)-asperaculin A and (-)-penifulvin D are reported. Each target is formed selectively by choice of oxidant in a final divergent bioinspired Baeyer-Villiger (BV) reaction. Density functional theory calculations reveal that electrostatic interactions between the oxidant leaving group and the lactone motif accounts for a reversal of selectivity with H2O2/H3O+ compared to peracids. Synthetic features include forging the polycyclic carbon framework with a diastereoselective meta-photocycloaddition biased by an ether substituent at the aryl α-position. The encumbered tertiary alcohol was installed by cyanation of a ketone intermediate followed by nonaqueous hydrolysis of the resulting delicate cyanohydrin.The biosynthesis of the potent neurotoxin tetrodotoxin (TTX, 1) is still unresolved. We used MS-guided screening and nuclear magnetic resonance analyses including long-range HSQMBC to characterize two novel skeletal tricyclic guanidino compounds, Tgr-288 (2a and 2b) and Tgr-210 (3), from the TTX-bearing newt, Taricha granulosa. The presence of these compounds in toxic newts is congruent with a previously proposed pathway for TTX biosynthesis in terrestrial organisms that includes a monoterpene precursor and the production of structurally diversified guanidino compounds.Drop condensation and evaporation as a result of the gradient in vapor concentration are important in both engineering and natural systems. One of the interesting natural examples is transpiration on plant leaves. Most of the water in the inner space of the leaves escapes through stomata, whose rate depends on the surface topography and a difference in vapor concentrations inside and just outside of the leaves. Previous research on the vapor flux on various surfaces has focused on numerically solving the vapor diffusion equation or using scaling arguments based on a simple solution with a flat surface. In this present work, we present and discuss simple analytical solutions on various 2D surface shapes (e.g., semicylinder, semiellipse, hair). The method of solving the diffusion equation is to use the complex potential theory, which provides analytical solutions for vapor concentration and flux. We find that a high mass flux of vapor is formed near the top of the microstructures while a low mass flux is developed near the stomata at the leaf surface. Such a low vapor flux near the stomata may affect transpiration in two ways. First, condensed droplets on the stomata will not grow due to a low mass flux of vapor, which will not inhibit the gas exchange through the stomatal opening. Second, the low mass flux from the atmosphere will facilitate the release of highly concentrated vapor from the substomatal space.The exploitation of strong light-matter interactions in chiral plasmonic nanocavities may enable exceptional physical phenomena and lead to potential applications in nanophotonics, information communication, etc. Therefore, a deep understanding of strong light-matter interactions in chiral plasmonic-excitonic (plexcitonic) systems constructed by a chiral plasmonic nanocavity and molecular excitons is urgently needed. Herein, we systematically studied the strong light-matter interactions in gold nanorod-based chiral plexcitonic systems assembled on DNA origami. Rabi splitting and anticrossing behavior were observed in circular dichroism spectra, manifesting chiroptical characteristic hybridization. The bisignate line shape of the circular dichroism (CD) signal allows the accurate discrimination of hybrid modes. A large Rabi splitting of ∼205/∼199 meV for left-handed/right-handed plexcitonic nanosystems meets the criterion of strong coupling. Our work deepens the understanding of light-matter interactions in chiral plexcitonic nanosystems and will facilitate the development of chiral quantum optics and chiroptical devices.Water and ion transport in nanochannels is an intriguing topic that has been extensively investigated in several energy- and environment-related research fields. Recently developed two-dimensional (2D) materials are ideal building blocks for constructing confined nanochannels by self-stacking. Among these, graphene oxide (GO) is the most frequently employed as the starting material because of its excellent solution processability. Since solvation of the GO nanostructure usually impairs the function of nanochannels, in this study, chemically converted graphene was prepared using a one-step method, to simultaneously acquire the desired stability and functionality of the nanochannels. The confined channels with high charge densities are capable of excluding ∼90% NaCl solutes from water in a pressure-driven filtration process. LY 3200882 This surpasses the performance of most GO desalination membranes reported in the literature. Thus, this study provides useful information for the feasible development of ion-exclusion nanochannel membranes based on the proposed nanochannel-confined charge repulsion mechanism.The assembly of guanosine and boronic acids produces anionic hydrogels (G-B hydrogels) that mimic the topology of the DNA G-quadruplex. We herein demonstrate an unconventional approach of using the G-B hydrogel as a supramolecular template that assembles the irreversible formation of DNA G-quadruplex-selective 1,4-triazole ligands from a pool of alkyne-azide building blocks. These generated ligands could also stabilize and strengthen the gel assembly.We present a study of the structural evolution of tantalum cluster anions Tan-, 6 ≤ n ≤ 13 using a combination of trapped ion electron diffraction (TIED) experiments with a variety of electronic structure methods. A genetic algorithm has been employed to establish a set of likely structures for each cluster, their geometries and energetics have been studied by density functional theory (DFT), random phase approximation, and two-component (2C) DFT methods, which include spin-orbit coupling. We find octahedral structures for Ta6- and Ta8- as well as structures based on the pentagonal bipyramid (Ta7- and Ta9-). Ta10–Ta12- are defective icosahedral structures and Ta13- is a distorted icosahedron. For most clusters, we find a good agreement between the theoretically predicted ground-state structures, especially those determined by the 2C method and the TIED results.