Activity

  • Lopez Greer posted an update 1 day, 5 hours ago

    (2) Beginning with the theoretical analysis of the safe flow of gas hydrate in a pipeline, the flow characteristics of gas hydrate in the flow system are described; the special flow form of swirl flow has a great influence on the safe flow law of hydrate. (3) The growth and coalescence mechanisms of spiral hydrate in two mainstream systems of separated flow and dispersed flow are explored and researched. The critical tangential velocity of flow is taken as the standard of criterion.We explore the role of molten nitrate interfaces on MgO surface treatment for improving the reversibility of thermochemical energy storage via sorption and desorption of water or CO2. Our molecular dynamics simulations focus on melts of LiNO3, NaNO3, KNO3, and the triple eutectic mixture Li0.38Na0.18K0.44NO3 on the surface of MgO to provide atomic scale details of adsorbed layers and to rationalize interface energies. On this basis, a thermodynamic model is elaborated to characterize the effect of nitrate melts on the dehydration of Mg(OH)2 and to quantitatively explain the difference in dehydration temperatures of intact and LiNO3-doped Mg(OH)2.Foams are viscoelastic soft materials with complex mechanical properties. Here, we evaluated the friction dynamics of foams between acrylic plates using a sinusoidal motion friction evaluation system and we found some interesting characteristics under accelerated conditions. On a typical solid surface, a symmetrical friction profile, in which static and kinetic frictions are observed, is obtained under reciprocating nonlinear motion. Meanwhile, significant lubricant effects and velocity-dependent friction profiles without static friction were observed in foams. The friction force in foams increased in proportion to the power of velocity, with a power index of less then 1. These characteristic and dynamic phenomena in foams were observed in this study. They had been caused by the formation of a thick lubricant film and various dissipative modes including surfactant diffusion, viscous dissipation, and wall slip of bubbles. Moreover, the addition of a thickener increased the friction force and the delay time of friction response and improved the foam durability against normal force and shear. SAR405 solubility dmso These findings are useful for understanding dynamic phenomena in soft materials.An effective method that can produce a large amount of Kraft lignin with improved homogeneity is strongly desired for Kraft lignin’s high-value applications and scientific advancements. Herein, a one-pot acid-catalyzed liquefaction method was developed to recover Kraft lignin directly from black liquor. The recovery rate and properties of the recovered lignin were affected by the reaction time, reaction temperature, moisture content (MC), pH, and acid categories. The highest lignin recovery rate of 75% was achieved when the concentrated black liquor (MC = 25%) reacted with methanol at pH = 7 and 160 °C for 10 min using acetic acid as the catalyst. Most of the recovered lignin from this method showed an average molecular weight (Mw) value less than 2000 Da and a polydispersity (PDI) value less than 2.0. Such a PDI value was lower than that of current acid precipitated lignin (around 2.2-5.4). The recovered lignin was directly used to replace 20% of the petroleum-based polyol in the formula of a flexible polyurethane (PU) foam, and it was found that the molecular weight characteristics of the lignin affected the physical and mechanical properties of the flexible PU foams. The recovered lignin with the Mw value of 1600 Da and the PDI value of 1.8 was able to maintain the major physical and mechanical properties of the flexible PU foams. This study provided a promising way to recover lignin with improved homogeneity from black liquor with the potential to customize lignin properties to meet the requirements of downstream processes.This research investigates the catalytic performance of a metal-organic framework (MOF) with a functionalized ligand-UiO-66-NH2-in the oxidative desulfurization of dibenzothiophene (DBT) in n-dodecane as a model fuel mixture (MFM). The solvothermally prepared catalyst was characterized by XRD, FTIR, 1H NMR, SEM, TGA, and MP-AES analyses. A response surface methodology was employed for the experiment design and variable optimization using central composite design (CCD). The effects of reaction conditions on DBT removal efficiency, including temperature (X 1), oxidant agent over sulfur (O/S) mass ratio (X 2), and catalyst over sulfur (C/S) mass ratio (X 3), were assessed. Optimal process conditions for sulfur removal were obtained when the temperature, O/S mass ratio, and C/S mass ratio were 72.6 °C, 1.62 mg/mg, and 12.1 mg/mg, respectively. Under these conditions, 89.7% of DBT was removed from the reaction mixture with a composite desirability score of 0.938. From the results, the temperature has the most significant effect on the oxidative desulfurization reaction. The model F values gave evidence that the quadratic model was well-fitted. The reusability of the MOF catalyst in the ODS reaction was tested and demonstrated a gradual loss of activity over four runs.The formation of nanobiohybrids through the immobilization of enzymes on functional nanomaterials has opened up exciting research opportunities at the nanobiointerfaces. These systems hold great promise for a wide range of applications in biosensing, biocatalytic, and biomedical fields. Here, we report the formation of a hybrid nanobiocatalytic system through the adsorption of cytochrome c (Cyt c) on pluronic triblock copolymer, P123 (PEO-b-PPO-b-PEO), stabilized MoS2 nanosheets. The use of pluronic polymer has helped not only to greatly stabilize the exfoliated MoS2 nanosheets but also to allow easy adsorption of Cyt c on the nanosheets without major structural changes due to its excellent biocompatibility and soft protein-binding property. By comparing the catalytic activity of the Cyt c-MoS2 nanobiohybrid with that of the free Cyt c and as-prepared MoS2 nanosheets, we have demonstrated the active role of the nanobiointeractions in enhancing the catalytic activity of the hybrid. Slight structural perturbation at the active site of the Cyt c upon adsorption on MoS2 has primarily facilitated the peroxidase activity of the Cyt c. As the MoS2 nanosheets and the native Cyt c individually exhibit weaker intrinsic peroxidase activities, their mutual modulation at the nanobiointerface has made the Cyt c-MoS2 a novel nanobiocatalyst with superior activity.Batch reactors are large vessels in which chemical reactions take place. They are mostly found to be used in process control industries for processes such as reactant mixing, waste treatment of leather byproducts, and liquid extraction. Modeling and controlling of these systems are complex due to their highly nonlinear nature. The Wiener neural network (WNN) is employed in this work to predict and track the temperature profile of a batch reactor successfully. WNN is different from artificial neural networks in various aspects, mainly its structure. The brief methodology that was deployed to complete this work consisted of two parts. The first part is modeling the WNN-based batch reactor using the provided input-output data set. The input is feed given to the reactor, and the reactor temperature needs to be maintained in line with the optimal profile. The objective in this part is to train the neural network to efficiently track the nonlinear temperature profile that is provided from the data set. The second part is designing a generalized predictive controller (GPC) using the data obtained from modeling the reactor to successfully track any arbitrary temperature profile. Therefore, this work presents the experimental modeling of a batch reactor and validation of a WNN-based GPC for temperature profile tracking.Antimicrobial peptides (AMPs) are widely studied as therapeutic agents due to their broad-spectrum efficacy against infections. However, their clinical use is hampered by the low in vivo bioavailability and systemic toxicity. Such limitations might be overcome by using appropriate drug delivery systems. Here, the preparation of a drug delivery system (DDS) by physical conjugation of an arginine-rich peptide and hydrothermal carbon nanoparticles (CNPs) has been explored, and its antimicrobial efficacy against Eschericia coli (E. coli) and Staphylococcus aureus investigated in comparison with the unloaded carrier and the free peptide. The mechanism of interaction between CNPs and the bacteria was investigated by scanning electron microscopy and a combined dielectrophoresis-Raman spectroscopy method for real-time analysis. In view of a possible systemic administration, the effect of proteins on the stability of the DDS was investigated by using albumin as a model protein. The peptide was bounded electrostatically to the CNPs surface, establishing an equilibrium modulated by pH and albumin. The DDS exhibited antimicrobial activity toward the two bacterial strains, albeit lower as compared to the free peptide. The decrease in effectiveness toward E. coli was likely due to the rapid formation of a particle-induced extracellular matrix. The present results are relevant for the future development of hydrothermal CNPs as drug delivery agents of AMPs.Nanocrystalline TiO2 and reduced graphene oxide (rGO) materials have been synthesized by a simple and low-cost microwave-assisted hydrothermal method and applied in dye-sensitized solar cells (DSSCs) as photoactive and metal-free counter electrodes, respectively. Different TiO2 nanocrystalline materials have been synthesized via the acid hydrolysis sol-gel method, followed by microwave hydrothermal treatment at 210 °C and 300 psi and at different microwave irradiation times (20, 30, 45, and 60 min) instead of the usual hydrothermal time of 12 h. The properties of the produced mesoporous nanocrystalline TiO2 are investigated in terms of their morphology, crystal structure, optical properties, and surface area behavior using relevant characterization techniques. Maximum specific surface area values (S BET) of 97.77 and 100.7 m2 g-1 are measured for TiO2, with the average crystallite sizes of 18.6 and 17.5 nm, at microwave irradiation times of 30 and 45 min, respectively. Different rGO samples have been prepared by the modified Hummers method, followed by microwave-assisted reduction at a temperature of 200 °C and pressure of 300 psi at different microwave irradiation times (3, 17, and 25 min). The physicochemical properties of the different rGO samples in terms of morphology, crystallization, and optical properties are characterized by TEM, XRD, and Raman spectroscopic analysis. The current density J sc of the fabricated DSSCs based on TiO2 as the photoelectrode and rGO as the counter electrode compared with DSSCs based on Pt as the counter electrode is found to be 11.25 and 9.28 mA cm-2, respectively. Although the overall power efficiency of the fabricated DSSCs based on rGO as the counter electrode is lower than that based on the Pt electrode, the former still exhibits promising prospects for replacing Pt with low-cost metal-free carbon-based DSSCs.Li7P3S11 solid electrolytes (SEs) subjected to liquid-phase synthesis with CaS or CaI2 doping were investigated in terms of their ionic conductivity and stability toward lithium anodes. No peak shifts were observed in the XRD patterns of CaS- or CaI2-doped Li7P3S11, indicating that the doping element remained at the grain boundary. CaS- or CaI2-doped Li7P3S11 showed no internal short circuit, and the cycling continued, indicating that not only CaI2 including I- but also CaS could help increase the lithium stability. These results provide insights for the development of sulfide SEs for use in all-solid-state batteries in terms of their ionic conductivity and stability toward lithium anodes.