Activity

  • Fagan Cote posted an update 1 week ago

    s PDs feel that virtual CEs should be considered by the Vascular Surgery Board.Obesogenic and diabetogenic high fat (HF) diets can influence genetic factors in disease development with sexual dimorphic responses. We investigated potential protective effects of tart cherry (TC), fish oil (FO) and TC+FO supplementation in TALLYHO/Jng (TH) and C57BL/6J (B6) mice fed HF diets. Male and female TH and B6 mice were weaned onto five different diets; low fat (LF), HF, and HF supplemented with TC, FO, or TC+FO and maintained. For both males and females on LF, TH mice were heavier and fatter than B6, which was accentuated by HF in males, but not in females. TH males, but not others, developed severe glucose intolerance and hyperglycemia on HF, with reduced mRNA levels of Adipoq and Esr1 in adipose tissue. Considering energy balance, locomotor activity was lower in TH mice than B6 for both sexes without diet effects, except B6 females where HF decreased it. Compared to LF, HF decreased energy expenditure, RER, and food intake (in grams) for both sexes without strain differences. In all mice, but B6 males, HF increased plasma IL6 levels compared to LF. PARP/HDAC-IN-1 No preventive effects of TC, FO or TC+FO were noted for HF-induced obesity or energy imbalance, but FO alleviated glucose intolerance in TH males. Further, TC and FO decreased plasma IL6 levels, especially in females, without additive or synergistic effects of these two. Collectively, obesogenic and diabetogenic impacts of HF diets differed depending on the genetic predisposition. Moreover, sexually dimorphic effects of dietary supplementation were observed for glucose metabolism and inflammatory markers.Nonalcoholic fatty liver disease (NAFLD) is a chronic disease affecting the health of many people worldwide. Previous studies have shown that dietary calcium supplementation may alleviate NAFLD, but the underlying mechanism is not clear. In this study investigating the effect of calcium on hepatic lipid metabolism, 8-week-old male C57BL/6J mice were divided into four groups (n = 6) (1) mice given a normal chow containing 0.5% calcium (CN0.5), (2) mice given a normal chow containing 1.2% calcium (CN1.2), (3) mice given a high-fat diet (HFD) containing 0.5% calcium (HFD0.5), and (4) mice fed a HFD containing 1.2% calcium (HFD1.2). To understand the underlying mechanism, cells were treated with oleic acid and palmitic acid to mimic the HFD conditions in vitro. The results showed that calcium alleviated the increase in triglyceride accumulation induced by oleic acid and/or palmitic acid in HepG2, AML12, and primary hepatocyte cells. Our data demonstrated that calcium supplementation alleviated HFD-induced hepatic steatosis through increased liver lipase activity, proving calcium is involved in the regulation of hepatic lipid metabolism. Moreover, calcium also increased the level of glycogen in the liver, and at the same time had the effect of reducing glycolysis and promoting glucose absorption. Calcium addition increased calcium levels in the mitochondria and cytoplasm. Taken together, we concluded that calcium supplementation could relieve HFD-induced hepatic steatosis by changing energy metabolism and lipase activity.Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive liver fat deposition in the absence of significant alcohol intake. Since extra virgin olive oil (EVOO) reduces fat accumulation, we analyzed the involvement of nitro-fatty acids (NO2-FA) on the beneficial effects of EVOO consumption on NAFLD. Nitro-fatty acids formation was observed during digestion in mice supplemented with EVOO and nitrite. Mice fed with a high-fat diet (HF) presented lower plasma NO2-FA levels than normal chow, and circulating concentrations recovered when the HF diet was supplemented with 10% EVOO plus nitrite. Under NO2-FA formation conditions, liver hemoxygenase-1 expression significantly increased while decreased body weight and fat liver accumulation. Mitochondrial dysfunction plays a central role in the pathogenesis of NAFLD while NO2-FA has been shown to protect from mitochondrial oxidative damage. Accordingly, an improvement of respiratory indexes was observed when mice were supplemented with both EVOO plus nitrite. Liver mitochondrial complexes II and V activities were greater in mice with EVOO supplementation and further improved in the presence of nitrite. Overall, our results strongly suggest a positive correlation between NO2-OA formation from EVOO and the observed improvement of mitochondrial function in NAFLD. The formation of NO2-FA can account for the health benefits associated with EVOO consumption.

    Downregulation of claudin-5 in the heart is associated with the end-stage heart failure. However, the underlying mechanism of claudin-5 is unclear. Here we investigated the molecular actions of claudin-5 in perspective of mitochondria in cardiomyocytes to better understand the role of claudin-5 in cardioprotection during ischemia.

    Claudin-5 was detected in the murine heart tissue and the neonatal rat cardiomyocytes (NRCM). Its protein level was severely decreased after myocardial ischemia/reperfusion (I/R; 30 min/24 h) or hypoxia/reoxygenation (H/R; 24 h/4 h). Claudin-5 was present in the mitochondria of NRCM as determined by confocal microscopy. H/R-induced downregulation of claudin-5 was accompanied by mitochondrial fragmentation. The protein level of mitofusin 2 (Mfn2) was dramatically decreased while the expression of dynamin-related protein (Drp) 1 was significantly increased after H/R. H/R-induced mitochondrial swelling and fission were observed by transmission electron microscope (TEM). Overexpresshemia-induced stress.The management of acute ST-elevation myocardial infarction (STEMI) has transitioned from observation and reactive treatment of hemodynamic and arrhythmic complications to accelerated reperfusion and application of evidence-based treatment to minimize morbidity and mortality. International research established the importance of timely reperfusion therapy and the application of fibrinolysis, primary percutaneous coronary intervention (PCI) and subsequent development of the pharmacoinvasive approach. Clinician thought leaders developed and investigated comprehensive systems of care to optimize STEMI patients’ outcomes with a key focus in Canada being the integration of prehospital paramedics in diagnosis, triage and treatment. This article will review highlights of these interventions and identify future challenges and opportunities in STEMI patient care.