-
Brask Denton posted an update 1 month, 1 week ago
Streptomyces genomes harbor numerous, biosynthetic gene clusters (BGCs) encoding for drug-like compounds. While some of these BGCs readily yield expected products, many do not. Biosynthetic crypticity represents a significant hurdle to drug discovery, and the biological mechanisms that underpin it remain poorly understood. Polycyclic tetramate macrolactam (PTM) antibiotic production is widespread within the Streptomyces genus, and examples of active and cryptic PTM BGCs are known. To reveal further insights into the causes of biosynthetic crypticity, we employed a PTM-targeted comparative metabologenomics approach to analyze a panel of S. griseus clade strains that included both poor and robust PTM producers. By comparing the genomes and PTM production profiles of these strains, we systematically mapped the PTM promoter architecture within the group, revealed that these promoters are directly activated via the global regulator AdpA, and discovered that small promoter insertion-deletion lesions (indels) differentiate weaker PTM producers from stronger ones. We also revealed an unexpected link between robust PTM expression and griseorhodin pigment coproduction, with weaker S. griseus-clade PTM producers being unable to produce the latter compound. This study highlights promoter indels and biosynthetic interactions as important, genetically encoded factors that impact BGC outputs, providing mechanistic insights that will undoubtedly extend to other Streptomyces BGCs. We highlight comparative metabologenomics as a powerful approach to expose genomic features that differentiate strong, antibiotic producers from weaker ones. This should prove useful for rational discovery efforts and is orthogonal to current engineering and molecular signaling approaches now standard in the field.Loss-of-function mutations in acid beta-glucosidase 1 (GBA1) are among the strongest genetic risk factors for Lewy body disorders such as Parkinson’s disease (PD) and Lewy body dementia (DLB). Altered lipid metabolism in PD patient-derived neurons, carrying either GBA1 or PD αS mutations, can shift the physiological α-synuclein (αS) tetramer-monomer (TM) equilibrium toward aggregation-prone monomers. A resultant increase in pSer129+ αS monomers provides a likely building block for αS aggregates. 3K αS mice, representing a neuropathological amplification of the E46K PD-causing mutation, have decreased αS TM ratios and vesicle-rich αS+ aggregates in neurons, accompanied by a striking PD-like motor syndrome. We asked whether enhancing glucocerebrosidase (GCase) expression could benefit αS dyshomeostasis by delivering an adeno-associated virus (AAV)-human wild-type (wt) GBA1 vector into the brains of 3K neonates. Intracerebroventricular AAV-wtGBA1 at postnatal day 1 resulted in prominent forebrain neuronal GCase expression, sustained through 6 mo. GBA1 attenuated behavioral deficits both in working memory and fine motor performance tasks. Furthermore, wtGBA1 increased αS solubility and the TM ratio in both 3K-GBA mice and control littermates and reduced pS129+ and lipid-rich aggregates in 3K-GBA. We observed GCase distribution in more finely dispersed lysosomes, in which there was increased GCase activity, lysosomal cathepsin D and B maturation, decreased perilipin-stabilized lipid droplets, and a normalized TFEB translocation to the nucleus, all indicative of improved lysosomal function and lipid turnover. Therefore, a prolonged increase of the αS TM ratio by elevating GCase activity reduced the lipid- and vesicle-rich aggregates and ameliorated PD-like phenotypes in mice, further supporting lipid modulating therapies in PD.Proinflammatory activation of macrophages in metabolic tissues is critically important in the induction of obesity-induced metaflammation. Here, we demonstrate that the soluble mannose receptor (sMR) plays a direct functional role in both macrophage activation and metaflammation. We show that sMR binds CD45 on macrophages and inhibits its phosphatase activity, leading to an Src/Akt/NF-κB-mediated cellular reprogramming toward an inflammatory phenotype both in vitro and in vivo. Remarkably, increased serum sMR levels were observed in obese mice and humans and directly correlated with body weight. Importantly, enhanced sMR levels increase serum proinflammatory cytokines, activate tissue macrophages, and promote insulin resistance. Altogether, our results reveal sMR as regulator of proinflammatory macrophage activation, which could constitute a therapeutic target for metaflammation and other hyperinflammatory diseases.Elastography is an imaging technique to reconstruct elasticity distributions of heterogeneous objects. Since cancerous tissues are stiffer than healthy ones, for decades, elastography has been applied to medical imaging for noninvasive cancer diagnosis. Although the conventional strain-based elastography has been deployed on ultrasound diagnostic-imaging devices, the results are prone to inaccuracies. Model-based elastography, which reconstructs elasticity distributions by solving an inverse problem in elasticity, may provide more accurate results but is often unreliable in practice due to the ill-posed nature of the inverse problem. We introduce ElastNet, a de novo elastography method combining the theory of elasticity with a deep-learning approach. With prior knowledge from the laws of physics, ElastNet can escape the performance ceiling imposed by labeled data. Selleckchem JAK inhibitor ElastNet uses backpropagation to learn the hidden elasticity of objects, resulting in rapid and accurate predictions. We show that ElastNet is robust when dealing with noisy or missing measurements. Moreover, it can learn probable elasticity distributions for areas even without measurements and generate elasticity images of arbitrary resolution. When both strain and elasticity distributions are given, the hidden physics in elasticity-the conditions for equilibrium-can be learned by ElastNet.The lymphatic system is involved in various biological processes, including fluid transport from the interstitium into the venous circulation, lipid absorption, and immune cell trafficking. Despite its critical role in homeostasis, lymphangiogenesis (lymphatic vessel formation) is less widely studied than its counterpart, angiogenesis (blood vessel formation). Although the incorporation of lymphatic vasculature in engineered tissues or organoids would enable more precise mimicry of native tissue, few studies have focused on creating engineered tissues containing lymphatic vessels. Here, we populated thick collagen sheets with human lymphatic endothelial cells, combined with supporting cells and blood endothelial cells, and examined lymphangiogenesis within the resulting constructs. Our model required just a few days to develop a functional lymphatic vessel network, in contrast to other reported models requiring several weeks. Coculture of lymphatic endothelial cells with the appropriate supporting cells and intact PDGFR-β signaling proved essential for the lymphangiogenesis process. Additionally, subjecting the constructs to cyclic stretch enabled the creation of complex muscle tissue aligned with the lymphatic and blood vessel networks, more precisely biomimicking native tissue. Interestingly, the response of developing lymphatic vessels to tensile forces was different from that of blood vessels; while blood vessels oriented perpendicularly to the stretch direction, lymphatic vessels mostly oriented in parallel to the stretch direction. Implantation of the engineered lymphatic constructs into a mouse abdominal wall muscle resulted in anastomosis between host and implant lymphatic vasculatures, demonstrating the engineered construct’s potential functionality in vivo. Overall, this model provides a potential platform for investigating lymphangiogenesis and lymphatic disease mechanisms.A delicate balance of noncovalent interactions directs the hierarchical self-assembly of molecular amphiphiles into spherical micelles that pack into three-dimensional periodic arrays, which mimic intermetallic crystals. Herein, we report the discovery that adding water to a mixture of an ionic surfactant and n-decane induces aperiodic ordering of oil-swollen spherical micelles into previously unrecognized, aqueous lyotropic dodecagonal quasicrystals (DDQCs), which exhibit local 12-fold rotational symmetry and no long-range translational order. The emergence of these DDQCs at the nexus of dynamically arrested micellar glasses and a periodic Frank-Kasper (FK) σ phase approximant sensitively depends on the mixing order of molecular constituents in the assembly process and on sample thermal history. Addition of n-decane to mixtures of surfactant and water instead leads only to periodic FK A15 and σ approximants with no evidence for aperiodic order, while extended ambient temperature annealing of the DDQC also reveals its transformation into a σ phase. Thus, these lyotropic DDQCs are long-lived metastable morphologies, which nucleate and grow from a stochastic distribution of micelle sizes formed by abrupt segregation of varied amounts of oil into surfactant micelles on hydration. These findings indicate that molecular building block complexity is not a prerequisite for the formation of aperiodic supramolecular order, while also establishing the generic nature of quasicrystalline states across metal alloys and self-assembled micellar materials.The motor protein dynein undergoes coordinated conformational changes of its domains during motility along microtubules. Previous single-molecule studies analyzed the motion of the AAA rings of the dynein homodimer, but not the distal microtubule-binding domains (MTBDs) that step along the track. Here, we simultaneously tracked with nanometer precision two MTBDs and one AAA ring of a single dynein as it underwent hundreds of steps using three-color imaging. We show that the AAA ring and the MTBDs do not always step simultaneously and can take differently sized steps. This variability in the movement between the AAA ring and MTBDs results in an unexpectedly large number of conformational states of dynein during motility. Extracting data on conformational transition biases, we could accurately model dynein stepping in silico. Our results reveal that the flexibility between major dynein domains is critical for dynein motility.The current model of replication-dependent (RD) histone biosynthesis posits that RD histone gene expression is coupled to DNA replication, occurring only in S phase of the cell cycle once DNA synthesis has begun. However, several key factors in the RD histone biosynthesis pathway are up-regulated by E2F or phosphorylated by CDK2, suggesting these processes may instead begin much earlier, at the point of cell-cycle commitment. In this study, we use both fixed- and live-cell imaging of human cells to address this question, revealing a hybrid model in which RD histone biosynthesis is first initiated in G1, followed by a strong increase in histone production in S phase of the cell cycle. This suggests a mechanism by which cells that have committed to the cell cycle build up an initial small pool of RD histones to be available for the start of DNA replication, before producing most of the necessary histones required in S phase. Thus, a clear distinction exists at completion of mitosis between cells that are born with the intention of proceeding through the cell cycle and replicating their DNA and cells that have chosen to exit the cell cycle and have no immediate need for histone synthesis.