-
Lindgreen Ray posted an update 1 week, 4 days ago
elegans reproduction and post-pesticides samples reduced worms’ survival rate and lifespan. PCA analysis indicated that the presence of metals and pesticides are important variables that impacted C. elegans biological endpoints. Our data demonstrates that Uruguay River and two affluents are contaminated independent whether before or after pesticides’ application season. In addition, it reinforces the usefulness of biological indicators, since simple physicochemical analyses are not sufficient to attest water quality and ecological safety.We examine the relative performance of the industry, services, and agriculture sectors in energy conservation and reduction in CO2 emissions in Pakistan using the “spatial-temporal decomposition” method by taken data from 2006 to 2016. An efficient way to achieve low-carbon economy targets is to decompose different factors contributing to CO2 emissions, including structure effect, intensity effect, GDP gap effect, energy use efficiency effect, and economic efficiency. We classify economic sectors into three groups based on performance, i.e., sectors performing below, average, and above-average performing. Our results indicate that the economic efficiency and energy use efficiency effects in the industry sector have remained above average. In contrast, the GDP gap effect has remained below average. In the case of structure effect and intensity effect, the agriculture sector has performed on average. In contrast, the service sector has shown mixed results in all factors. The government should pay special attention to energy use structure and innovation to improve desirable output technical efficiency to achieve the target carbon emission level.Population detonation and rapid industrialization are the major factors behind the reduction in cultivable land that affects crop production seriously. This situation is further being deteriorated due to the negative effects of abiotic stresses. Under such conditions, plant growth-promoting rhizobacteria (PGPR) are found to improve crop production which is essential for sustainable agriculture. This study is focused on the isolation of potent arsenic (As)-resistant PGPR from the agricultural land of West Bengal, India, and its application to reduce As translocation in rice seedlings. After screening, an As-resistant PGPR strain AS18 was identified by phenotypic characters and 16S rDNA sequence-based homology as Pantoea dispersa. This strain displayed nitrogen fixation, phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) activity, indole-3-acetic acid (IAA) production, in addition to As (III) resistance up to 3750 μg/mL. The As removal efficiency of this strain was up to 93.12% from the culture medium as evidenced by AAS. The bioaccumulation property of AS18 strain was further validated by TEM-EDAX-XRD-XRF-FTIR studies. This strain showed significant morpho-biochemical improvements including antioxidant enzymatic activities and As-minimization in plant (rice) cells. Thus, being an As-resistant potent PGPR, AS18 strain is expected to be applied in As-spiked agricultural fields for bioremediation and phytostimulation.Residues of açaí seeds (Euterpe oleracea Mart.) were a novel source for the synthesis of the acid heterogeneous catalyst applied in the conversion of low free fatty acid waste cooking oil (WCO) to biodiesel. Yield of activated carbon (AC) and catalyst (CAT), as well as density of SO3H groups and total acidity, was analyzed in an entirely random designed experiment using multiple linear regression, one-way ANOVA, and Tukey’s post hoc test. Time, temperature, dosage of KOH, and ratio of H2SO4/AC were the predictor variables with 3 levels each, at a significance level of α = .05. A significant yield variation portion of AC was explained by the experimental factors (R2 = .891, F (3, 23) = 62.9, p less then .0001), as did the yield of CAT (R2 = .960, F (3, 23) = 185.7, p less then .0001), density of SO3H (R2 = .969, F (3, 23) = 242.2, p less then .0001), and total acidity (R2 = .973, F (3, 23) = 280.6, p less then .0001). Levels of time (p = .001) and KOH dosage (p = .006) were significant to the yield of AC, and temperature levels were not influent on density of SO3H (p = .731) or total acidity (p = .762). CAT showed a SBET of 249 m2 g-1, Vpore of 0.104 cm3 g-1, low crystallinity, high thermal stability, and a mesoporous amorphous structure. Optimized catalytic tests resulted in 89% conversion of WCO and 11 cycles of reuse, better than pure H2SO4 or pure KOH (p less then .0001) and also better than many biomass-derived catalysts reported in the literature.In this experimental work, the effect of cotton bags filled with phosphate on solar distillery performance has been investigated. In this study, 25 phosphate bags are evenly distributed (5 × 5) with a length equal to 50 cm in a wooden box called the modified solar still (MSS). This system was compared with the conventional solar still (CSS) in the same climatic conditions. Phosphate bags are placed vertically to increase the energy storage capacity, and the water’s surface area since the capillaries inside the phosphate bags play an important role in increasing the energy storage capacity. Experiments were conducted at El Oued University in Algeria during April and May 2020, with 1 cm and 2 cm of saltwater depth. EX-A8428 The cumulative yield of 5.27 and 4.87 kg was produced from the MSS at 1 cm and 2 cm of saltwater, respectively, while the cumulative yield of the CSS was 3.8 kg. The MSS’s overall efficiency at 1 cm and 2 cm of saltwater was enhanced by 28 and 22.5%, respectively compared with the CSS. The presence of calcium and copper in phosphate stores the heat energy during morning and afternoon, and stored heat energy was released during evening. Finally, it can be concluded that increasing phosphate bags significantly enhances the productivity in solar distillation, increasing efficiency and productivity.A model contaminated system was developed to determine mechanisms of napthalene bioaccumulation and effect on the mineral composition of spring barley grain and straw grown in the Calcari-Endohypogleyic Luvisol. The soil was mixed with green waste compost and spiked with naphthalene which concentration varied from 0 to 500 ppm. Obtained results indicate that naphthalene additive at the concentration rate from 100 to 500 ppm reduced spring barley germination. The significant lower weight of green mass per pot, one plant weight and mass of 1000 grains were observed in the amendment with the highest naphthalene concentration (500 ppm). It was determined the daily intake (ED) of 16PAHs via spring barley grain and incremental lifetime cancer risks (ILCR). Estimated ED and ILCR of 16PAHs via spring barley ranged from 1.00 to 3.78 ng day-1 and 3.79 to 14.3 × 10-5 respectively. It should be noted that obtained results are higher around 10 times compared to previous studies performed using wheat grain. This study presents the mechanisms of naphthalene bioaccumulation and effect on the mineral composition of the most common agricultural plant spring barley grain and straw.