Activity

  • Lancaster Hunt posted an update 1 week, 6 days ago

    Depression is the major psychiatric disorder in patients with epilepsy. Vortioxetine is a novel antidepressant drug for the treatment of major depressive disorders. In the present study, effects of vortioxetine were evaluated in different experimental epilepsy models of rats.

    Fifty-six adult male Wistar rats and 28 WAG/Rij rats were divided into 12 groups of 7 rats each. Experiments were conducted with penicillin (500 IU, i.c.) and pentylenetetrazole models (50 mg/kg, intraperitoneally (i.p.)) in Wistar rats and genetic absence epileptic WAG/Rij rats. The vortioxetine (1, 5, or 10 mg/kg, i.p.) was evaluated in these three models. All groups were compared with their control groups.

    In the penicillin-induced seizure model, 1, 5, or 10 mg/kg vortioxetine administration significantly decreased mean spike frequency. In the pentylenetetrazole-induced seizure model, 1, 5, or 10 mg/kg vortioxetine demonstrated a significant dose-dependent decrease in mean spike frequency, an increase in the latency to minor and major seizures, and a decrease in total duration of major seizure and convulsion stage. In genetic absence epileptic WAG/Rij rats, 1 mg/kg vortioxetine caused no significant alteration in the number and duration of SWDs compared to the controls, while 5 and 10 mg/kg doses of vortioxetine increased the number and duration of SWDs. Amplitude of the epileptiform activity did not change in any of the experimental epilepsy models.

    The results of this study suggested that vortioxetine has anticonvulsant activity in penicillin- and pentylenetetrazole-induced seizure models. However, it exhibited proconvulsant activity in the absence epileptic WAG/Rij rats.

    The results of this study suggested that vortioxetine has anticonvulsant activity in penicillin- and pentylenetetrazole-induced seizure models. However, it exhibited proconvulsant activity in the absence epileptic WAG/Rij rats.Many people with epilepsy (PWE) present to the emergency department setting with their first seizure and must wait weeks or months to be seen by a specialized epilepsy provider. The time period between presentation of first seizure and entry into specialized care can be extremely stressful and precarious for PWE and their families. In order to achieve optimal outcomes, epilepsy self-management should be initiated as soon as possible, including in the emergency department setting. The purpose of this study was to review and evaluate existing epilepsy/seizure-related education materials provided to patients in the emergency room setting to determine the degree to which these materials prepare patients and their families for self-management of epilepsy, or potential epilepsy, during the interim between emergency department discharge and entry into specialized care. Twenty emergency department epilepsy/seizure patient discharge education materials were collected and evaluated using a rubric based on the framework of the Epilepsy Self-Management Scale (AESMMI). Materials were rated on a 0-3 scale based on the degree to which self-management education, resources, and skill building were included. The mean score of materials reviewed was quite low at just 10.4, with a score of 33 possible. Also concerning is that the materials scored lowest in the domains of social support, stress management, and coping, all of which are extremely important areas for PWE, especially in the early phases of the disease when patients and families are adjusting. Findings highlight the need for development of robust self-management interventions tailored to PWE in the transition period from presentation of first seizure to entry to specialized care.

    The fruit of Terminalia chebula Retz. is one of the most widely used herbal drug in Traditional medicine prescriptions including those for liver diseases. In the screening of bioactive constituents that have potential hepatoprotective activity, chebulinic acid (CA) which is a major chemical constituent of T. chebula fruit showed potent activity.

    This work was conducted to investigate the hepatoprotective activity and mechanisms of CA.

    The hepatoprotective effect of CA was examined on hepatotoxic models of cells, zebrafish larvae and mice caused by tert-butyl hydrogen peroxide (t-BHP), acetaminophen (APAP) and CCl

    , respectively.

    Pretreatment with CA could prevent t-BHP-induced damage in L-02 hepatocytes by blocking the production of ROS, reducing LDH levels and enhancing HO-1 and NQO1 expression via MAPK/Nrf2 signaling pathway. In animal experiments, CA significantly protected mice from CCl

    -induced liver injury, as demonstrated by reduced ALT, AST and MDA levels, enhanced SOD activity, improved liver histopathological changes, and the activation of the Nrf2/HO-1 signaling pathway. CA metabolized to chebulic acid isomers with DPPH radical scavenging activity. In a transgenic zebrafish line with liver specific expression of DsRed RFP, CA diminished the hepatotoxicity induced by 10 mM APAP.

    Experiments in cell and two animal models demonstrated consistent results and comprehensively expounded the hepatoprotective effects of CA.

    Experiments in cell and two animal models demonstrated consistent results and comprehensively expounded the hepatoprotective effects of CA.The State Council of China had issued the Air Pollution Prevention and Control Action Plan (abbreviated as “Clean Air Actions”), which ended in 2017. Ras inhibitor To evaluate the implementation effect of the clean air actions and provide the scientific basis on the future control policy, a Geographical Detector was used to quantify the impact of natural and socioeconomic factors on the PM2.5 concentration and its reductions in China from the years of 2014-2017. In terms of the impact on PM2.5 reduction, the industrial sulfur dioxide (SO2) and industrial soot emissions are the only two factors shown significant influences. So the controls of industrial emission were the major policies during the implementation of the Clean Air Actions. link2 In terms of the impact on the PM2.5 concentrations, industrial emission was the strongest socioeconomic factor in the beginning of the Clean Air Actions, but its dominance was then declining. In contrast, the influences of population density had been enhancing and became the greatest factor in the final year. So the new control measures should focus on the urbanization regulation. In addition, the interactions between different socioeconomic factors are proved to bivariate enhance the influences on the PM2.5 concentration levels. Multiple factors should thus be taken into account when any new control policies are going to be established.This study aimed to investigate a mixed microalgae culture’s capacity to simultaneously remove nutrients and organic matter from industrial effluents while producing carbohydrate-rich biomass. A culture initially dominated by filamentous cyanobacteria Geitlerinema sp. was inoculated in a lab-scale stirred tank photobioreactor, operating at 10, 8, and 6 days hydraulic retention time (HRT). The results show that different HRT led to different inorganic carbon profiles and NP ratios in the culture, influencing microbial changes, and carbohydrate content. Hence, higher N-NH4+ removal efficiencies were obtained at HRT of 10 d and decreased with decreasing HRT. Whereas, complete depletion of P-PO43- was achieved only at HRT of 8 d and 6 d. Also, the highest COD removal efficiency (60%) was achieved at 6 d of HRT. The maximum accumulation of carbohydrates was achieved at HRT of 8 d, which presented an NP ratio of 221 and carbon availability, recording a constant carbohydrate content of 57% without any additional carbon source. Furthermore, this operational condition reached the best biomass production of 0.033 g L-1d-1 of easy-settling cyanobacteria dominated culture. According to the results, this process presents an alternative to recycling industrial effluents and, at the same time, grow valuable biomass, closing a loop for sustainable economy.Chlorella vulgaris (C. vulgaris) was promising microalgae to simultaneously achieve biomass production, carbon dioxide (CO2) fixation, nutrients removal and proteins production especially under different conditions of CO2 gas and wastewaters. Results presented that maximal specific growth rate of C. vulgaris was 0.21-0.35 d-1 and 0.33-0.43 d-1 at 0.038% and 10% CO2 respectively, and corresponding maximal CO2 fixation rate was attended with 4.51-14.26 and 56.26-85.72 mg CO2·L-1·d-1. C. vulgaris showed good wastewater removal efficiency of nitrogen and phosphorus at 10% CO2 with 96.12%-99.61% removal rates. Nitrogen fixation amount achieved 41.86 mg L-1 when the initial NH4Cl concentration was set at 60 mg L-1 at 10% CO2. link3 Improved total protein (25.01-365.49 mg) and amino acids (24.56-196.44 mg) contents of C. vulgaris biomass was observed with the increasing of added CO2 and ammonium concentrations. Moreover, the developed kinetic function of C. vulgaris growth depends on both phosphorus quota and nitrogen quota with correlation coefficient (R2) ranged from 0.68 to 0.97. Computed maximal consumed nutrients concentrations (ΔCmax) based on Logistic function are positively related to initial NH4+-N concentrations, which indicated that adding ammonium could stimulate the utilization of both phosphorus and nitrogen.The Great East Japan Tsunami, triggered by the earthquake that occurred on March 11, 2011 in the Pacific Ocean, caused significant fatalities and socioeconomic damage. As recovery of a disaster area requires significant time, all possible mitigation measures must be prepared in advance for future events. As a tsunami countermeasure, coastal forests have been acknowledged to considerably reduce tsunami energy and decrease tsunami-related damage. In the Great East Japan tsunami, many trees of coastal forests were damaged by trunk breakage and overturning. This led to further infrastructural damage as the debris were transported landward and seaward by floodwaters. To better protect coastal areas from the secondary effects of tsunamis and reduce tsunami energy, coastal forests must exhibit higher resistance. This research investigated the effect of forestry management by applying different levels of thinning of trees as a means of resistance to tree damage under tsunami events. In October of 1999, study plots were established with different thinning intensities in a mature coastal forest of Pinus thunbergii trees. As a useful indicator of the resistance of coastal forests to tsunamis, the threshold tsunami velocities at which trees in these study plots begin to be destroyed were calculated using a mechanistic model. The results revealed that trunk diameter is the most important parameter for increasing resistance to tsunamis. An analysis of the generalized linear model for diameter growth showed that heavy thinning best enhanced the diameter growth. Therefore, heavy thinning is the most effective approach to increasing the resistance of trees to tsunamis. Considering the relationship between resistance to tsunami and inundation depth, the resistance to tsunami decreased rapidly with increasing inundation depth in all plots. Differences in the resistance to the tsunami were not observed across all plots when the inundation depth exceeded the mean tree height.