Activity

  • Donnelly Tonnesen posted an update 1 week, 4 days ago

    Results show that the proposed method is more robust to salt-and-pepper noise and acquires better segmentation results on uneven illumination images in general without compromising its performance on regular illumination images. For a test group of seven real world uneven illumination images, the proposed method could lower the ME value by 15% and increase the DSC value by 10%.In this paper, a time-delayed fractional order adaptive sliding mode control algorithm is proposed for a two-wheel self-balancing vehicle system. The closed-loop system is proved based on the Lyapunov-Razumikhin function. The switching function is designed to make the system robust when facing uncertainties and external disturbances. It is designed to avoid monotonically increasing gains and can handle state-dependent uncertainties without a prior bound. The two-wheel self-balancing vehicle used in the experiment consists of a gyroscope MPU-6050 and accelerometer, a motor driving circuit composed of a motor driving chip TB6612FNG, and STM32F103x8B that is selected as the control core. The experimental results show that the time-delayed fractional order adaptive sliding mode control algorithm can make the vehicle achieve autonomous balance and quickly restore its stable state while appropriate disturbance is introduced.Grid cells and place cells are important neurons in the animal brain. The information transmission between them provides the basis for the spatial representation and navigation of animals and also provides reference for the research on the autonomous navigation mechanism of intelligent agents. Grid cells are important information source of place cells. The supervised learning and unsupervised learning models can be used to simulate the generation of place cells from grid cell inputs. However, the existing models preset the firing characteristics of grid cell. In this paper, we propose a united generation model of grid cells and place cells. First, the visual place cells with nonuniform distribution generate the visual grid cells with regional firing field through feedforward network. Second, the visual grid cells and the self-motion information generate the united grid cells whose firing fields extend to the whole space through genetic algorithm. Finally, the visual place cells and the united grid cells generate the united place cells with uniform distribution through supervised fuzzy adaptive resonance theory (ART) network. Simulation results show that this model has stronger environmental adaptability and can provide reference for the research on spatial representation model and brain-inspired navigation mechanism of intelligent agents under the condition of nonuniform environmental information.The key component in deep learning research is the availability of training data sets. With a limited number of publicly available COVID-19 chest X-ray images, the generalization and robustness of deep learning models to detect COVID-19 cases developed based on these images are questionable. We aimed to use thousands of readily available chest radiograph images with clinical findings associated with COVID-19 as a training data set, mutually exclusive from the images with confirmed COVID-19 cases, which will be used as the testing data set. Selleck PRT062607 We used a deep learning model based on the ResNet-101 convolutional neural network architecture, which was pretrained to recognize objects from a million of images and then retrained to detect abnormality in chest X-ray images. The performance of the model in terms of area under the receiver operating curve, sensitivity, specificity, and accuracy was 0.82, 77.3%, 71.8%, and 71.9%, respectively. The strength of this study lies in the use of labels that have a strong clinical association with COVID-19 cases and the use of mutually exclusive publicly available data for training, validation, and testing.[This corrects the article DOI 10.3389/fgene.2020.00594.].Tandem duplication (TD) is an important type of structural variation (SV) in the human genome and has biological significance for human cancer evolution and tumor genesis. Accurate and reliable detection of TDs plays an important role in advancing early detection, diagnosis, and treatment of disease. The advent of next-generation sequencing technologies has made it possible for the study of TDs. However, detection is still challenging due to the uneven distribution of reads and the uncertain amplitude of TD regions. In this paper, we present a new method, DINTD (Detection and INference of Tandem Duplications), to detect and infer TDs using short sequencing reads. The major principle of the proposed method is that it first extracts read depth and mapping quality signals, then uses the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm to find the possible TD regions. The total variation penalized least squares model is fitted with read depth and mapping quality signals to denoise signals. A 2D binary search tree is used to search the neighbor points effectively. To further identify the exact breakpoints of the TD regions, split-read signals are integrated into DINTD. The experimental results of DINTD on simulated data sets showed that DINTD can outperform other methods for sensitivity, precision, F1-score, and boundary bias. DINTD is further validated on real samples, and the experiment results indicate that it is consistent with other methods. This study indicates that DINTD can be used as an effective tool for detecting TDs.Genomic selection in modern farming demands sufficient semen production in young bulls. Factors affecting semen quality and production capacity in young bulls are not well understood; DNA methylation, a complicated phenomenon in sperm cells, is one such factors. In this study, fresh and frozen-thawed semen samples from the same Norwegian Red (NR) bulls at both 14 and 17 months of age were examined for sperm chromatin integrity parameters, ATP content, viability, and motility. Furthermore, reduced representation bisulfite libraries constructed according to two protocols, the OvationĀ® RRBS Methyl-Seq System (Ovation method) and a previously optimized gel-free method and were sequenced to study the sperm DNA methylome in frozen-thawed semen samples. Sperm quality analyses indicated that sperm concentration, total motility and progressivity in fresh semen from 17 months old NR bulls were significantly higher compared to individuals at 14 months of age. The percentage of DNA fragmented sperm cells significantly decreased in both fresh and frozen-thawed semen samples in bulls with increasing age.