Activity

  • Franco Nance posted an update 1 week, 6 days ago

    uding TNFRSF10A, TNF, TNFRSF11B, FADD TNFRSF10B, CASP2, and TRAF2, all of which are important for the apoptotic pathway andsuppress the expression of one anti-apoptotic gene, BIRC5, in MDA-MB-231 cells. Compared to MDA-MB-231 cells, elevated levels of TNF and their receptor proteins may contribute to their increased sensitivity to TQ-induced apoptosis. It was concluded from this study that TQ targets the MDA-MB-231 and MDA-MB-468 cells differently. Additionally, due to the aggressive nature of TNBC and the lack of specific therapies in chemoresistant TNBC, our findings related to the identified apoptotic gene profile may point to TQ as a potential agent for TNBC therapy.In response to our narrative review, which suggested the use of the glutamatergic n-methyl-D-aspartate (NMDA) receptor antagonist ketamine as a potential treatment for anorexia nervosa (AN) […].Anorexia Nervosa (AN) represents a difficult therapeutic challenge, with up to 4% prevalence among females and increasing incidence among youth […].Breastfeeding is key for infant development and growth. Breast milk contains different bioactive compounds including antibodies. Recent studies have demonstrated the presence of breast milk SARS-CoV-2 antibodies after maternal infection and vaccination. However, the potential impact on the infant has not been explored yet. As a first step, we aimed at assessing the potential persistence of SARS-CoV-2 IgA and IgG antibodies from infected and vaccinated women in the gastrointestinal tract of the infants by means of an in vitro-simulated gastrointestinal digestion approach. Breast milk samples from 10 lactating women receiving mRNA vaccination against SARS-CoV-2 (n = 5 with BNT162b2 mRNA and n = 5 with mRNA-1273) and also, COVID-19 infected (n = 5) were included. SAR405 A control group with women with no exposure to the virus (n = 10 pre-pandemic) were also studied. The presence of IgA and IgG SARS-CoV-2 antibody levels was determined by ELISA after the gastric and intestinal stages. The impact of digested antibodies on infant gut microbiota was tested by simulating colonic fermentation with two different fecal inoculums infants from vaccinated and non-vaccinated mothers. Specific gut microbial groups were tested by targeted qPCR. In vitro infant gastrointestinal digestion significantly decreased the levels of both anti-SARS-CoV-2 IgA and IgG. However, both remained resistant in all the study groups except in that evaluating breast milk samples from infected women, in which IgG was degraded below the cut-off values in the intestinal phase. No effect of the antibodies on microbiota were identified after digestion. In conclusion, antibody levels against SARS-CoV-2 are reduced after in vitro-simulated gastrointestinal tract but remain present, so a positive biological effect could be expected from this infant immunization pathway.Anemia is one of the most frequent and earliest complications of chronic kidney disease (CKD), which impacts a patient’s quality of life and increases the risk of adverse clinical outcomes. Patients’ inflammatory status is strictly related to the occurrence of functional iron deficiency anemia (IDA) because this causes an increase in hepcidin levels with the consequent inhibition of iron absorption and release from cellular stores into blood circulation. The aim of this study was to evaluate the use of the new oral formulation based on ferric sodium EDTA in combination with vitamin C, folic acid, copper gluconate, zinc gluconate, and selenomethionine (Ferachel Forte®) in patients with moderate CKD and functional IDA, analyzing the inflammatory status in addition to iron blood parameters, in comparison with oral ferrous sulfate and liposomal iron therapies. Sixty-two elderly patients were randomly allocated to one of the following oral treatments for 6 months ferrous sulfate (Group 1; N = 20), ferric sodium EDTA in combination (Group 2; N = 22), and ferric liposomal formulation (Group 3; N = 20). The evaluated parameters included iron profile parameters of hemoglobin (Hb), sideremia, ferritin, transferrin saturation, C-reactive protein (CRP), and hepcidin. The results showed that in Group 1, there were no improvements. In Group 2, there were statistically significant (p < 0.001) improvements in all evaluated parameters. Finally, in Group 3, there were significant improvements in all evaluated parameters except for hepcidin, which was less than that of Group 2 patients. In conclusion, the findings showed the superior efficacy of the formulation based on ferric sodium EDTA over the other oral iron sources, and that this formulation can contribute to reducing the systemic inflammatory status in patients with CKD.Lung diseases, such as asthma, chronic obstructive pulmonary diseases (COPD), and cystic fibrosis (CF), are among the leading causes of mortality and morbidity globally. They contribute to substantial economic burdens on society and individuals. Currently, only a few treatments are available to slow the development and progression of these diseases. Thus, there is an urgent unmet need to develop effective therapies to improve quality of life and limit healthcare costs. An increasing body of clinical and experimental evidence suggests that altered zinc and its regulatory protein levels in the systemic circulation and in the lungs are associated with these disease’s development and progression. Zinc plays a crucial role in human enzyme activity, making it an essential trace element. As a cofactor in metalloenzymes and metalloproteins, zinc involves a wide range of biological processes, such as gene transcription, translation, phagocytosis, and immunoglobulin and cytokine production in both health and disease. Zinc has gained considerable interest in these lung diseases because of its anti-inflammatory, antioxidant, immune, and metabolic modulatory properties. Here we highlight the role and mechanisms of zinc in the pathogenesis of asthma, COPD, CF, acute respiratory distress syndrome, idiopathic pulmonary fibrosis, and pulmonary hypertension.Whether the associations between serum vitamin D (VitD) and metabolic-associated fatty liver disease (MAFLD) vary with chronic hepatitis B (CHB) infection has not been well established. This study aims to investigate the relationships between serum VitD and metabolism, liver fat content (LFC) and fibrosis among MAFLD patients with and without CHB. Consecutive subjects (healthy controls 360, CHB 684, MAFLD 521, CHB with MAFLD 206) were prospectively enrolled between January 2015 and December 2021. Anthropometric, laboratory, imaging, and histological evaluations were conducted, with LFC measured via magnetic resonance imaging-based proton density fat fraction (MRI-PDFF). Serum VitD levels were lower in MAFLD patients than in healthy controls and patients with CHB alone or overlapping with MAFLD (24.4 ± 8.1 vs. 29.0 ± 9.5 vs. 27.4 ± 9.6 vs. 26.8 ± 8.4 ng/mL respectively; p < 0.001 in one-way ANOVA test). After adjusting for confounding factors, including season, hypersensitive C-reactive protein, insulin resistance, liver stiffness measurements, sun exposure, exercise and dietary intake, multivariate linear regression analysis revealed that VitD remained significantly negatively correlated with LFC in MAFLD patients (β = -0.38, p < 0.001), but not in CHB with MAFLD patients. Moreover, quantile regression models also demonstrated that lower VitD tertiles were inversely associated with the risk of insulin resistance and moderate-severe steatosis in the MAFLD group (p for trend <0.05) but not in the MAFLD with CHB group. VitD deficiency was associated with the severity of metabolic abnormalities and steatosis independent of lifestyle factors in MAFLD-alone subjects but not in MAFLD with CHB subjects.Emerging research indicates that vitamin D metabolic disorder plays a major role in both acute pancreatitis (AP) and chronic pancreatitis (CP). This has been demonstrated by studies showing that vitamin D deficiency is associated with pancreatitis and its anti-inflammatory and anti-fibrotic effects by binding with the vitamin D receptor (VDR). However, the role of vitamin D assessment and its management in pancreatitis remains poorly understood. In this narrative review, we discuss the recent advances in our understanding of the molecular mechanisms involved in vitamin D/VDR signaling in pancreatic cells; the evidence from observational studies and clinical trials that demonstrate the connection among vitamin D, pancreatitis and pancreatitis-related complications; and the route of administration of vitamin D supplementation in clinical practice. Although further research is still required to establish the protective role of vitamin D and its application in disease, evaluation of vitamin D levels and its supplementation should be important strategies for pancreatitis management according to currently available evidence.(1) Background Nutrition therapy guided by indirect calorimetry (IC) is the gold standard and is associated with lower morbidity and mortality in critically ill patients. When performing IC during continuous venovenous hemofiltration (CVVH), the measured VCO2 should be corrected for the exchanged CO2 to calculate the ‘true’ Resting Energy Expenditure (REE). After the determination of the true REE, the caloric prescription should be adapted to the removal and addition of non-intentional calories due to citrate, glucose, and lactate in dialysis fluids to avoid over- and underfeeding. We aimed to evaluate this bioenergetic balance during CVVH and how nutrition therapy should be adapted. (2) Methods This post hoc analysis evaluated citrate, glucose, and lactate exchange. Bioenergetic balances were calculated based on these values during three different CVVH settings low dose with citrate, high dose with citrate, and low dose without citrate. The caloric load of these non-intentional calories during a CVVH-run was compared to the true REE. (3) Results We included 19 CVVH-runs. The bioenergetic balance during the low dose with citrate was 498 ± 110 kcal/day (range 339 to 681 kcal/day) or 26 ± 9% (range 14 to 42%) of the true REE. During the high dose with citrate, it was 262 ± 222 kcal/day (range 56 to 262 kcal/day) or 17 ± 11% (range 7 to 32%) of the true REE. During the low dose without citrate, the bioenergetic balance was -189 ± 77 kcal/day (range -298 to -92 kcal/day) or -13 ± 8% (range -28 to -5%) of the true REE. (4) Conclusions Different CVVH settings resulted in different bioenergetic balances ranging from -28% up to +42% of the true REE depending on the CVVH fluids chosen. When formulating a caloric prescription during CVVH, an individual approach considering the impact of these non-intentional calories is warranted.

    Various neurocognitive and mental health-related conditions have been associated with the gut microbiome, implicating a microbiome-gut-brain axis (MGBA). The aim of this systematic review was to identify, categorize, and review clinical evidence supporting medicinal plants for the treatment of mental disorders and studies on their interactions with the gut microbiota.

    This review included medicinal plants for which clinical studies on depression, sleeping disorders, anxiety, or cognitive dysfunction as well as scientific evidence of interaction with the gut microbiome were available. The studies were reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.

    Eighty-five studies met the inclusion criteria and covered thirty mental health-related medicinal plants with data on interaction with the gut microbiome.

    Only a few studies have been specifically designed to assess how herbal preparations affect MGBA-related targets or pathways. However, many studies provide hints of a possible interaction with the MGBA, such as an increased abundance of health-beneficial microorganisms, anti-inflammatory effects, or MGBA-related pathway effects by gut microbial metabolites.