Activity

  • Bennett Junker posted an update 6 hours, 51 minutes ago

    While a simpler transition probability model, when tested as a single predictor in the statistical analyses, accounted for significant variance in the data, the goodness-of-fit with the data significantly improved when the language-based complexity measure was included in the statistical model, while the variance explained by the transition probability model largely decreased. Model comparison also showed that shortest description length in a recursive language provides a better fit than six alternative previously proposed models of sequence encoding. The data support the hypothesis that, beyond the extraction of statistical knowledge, human sequence coding relies on an internal compression using language-like nested structures.

    The impact of large scale Mass Drug Adminstration (MDA) of ivermectin on active onchocerciasis transmission by Simulium damnosum, which transmits the parasite O. volvulus is of great importance for onchocerciasis control programmes. We investigated in the Mbam river system area, the impact of MDA of ivermectin on entomological indices and also verify if there are river system factors that could have favoured the transmission of onchocerciasis in this area and contribute to the persistence of disease. We compared three independent techniques to detect Onchocerca larvae in blackflies and also analyzed the river system within 9 months post-MDA of ivermectin.

    Simulium flies were captured before and after 1, 3, 6 and 9months of ivermectin-MDA. The biting rate was determined and 41% of the flies dissected while the rest were grouped into pools of 100 flies for DNA extraction. The extracted DNA was then subjected to O-150 LAMP and real-time PCR for the detection of infection by Onchocerca species using pool scre low. The dense river system generate important breeding sites that govern the abundance of Simulium during both dry and rainy seasons.

    Results from fly dissection (Microscopy), real-time PCR and LAMP revealed the same trends pre- and post-MDA. The infection rate with animal Onchocerca sp was exceptionally low. The dense river system generate important breeding sites that govern the abundance of Simulium during both dry and rainy seasons.Tumors contain multiple subpopulations of genetically distinct cancer cells. Reconstructing their evolutionary history can improve our understanding of how cancers develop and respond to treatment. Subclonal reconstruction methods cluster mutations into groups that co-occur within the same subpopulations, estimate the frequency of cells belonging to each subpopulation, and infer the ancestral relationships among the subpopulations by constructing a clone tree. However, often multiple clone trees are consistent with the data and current methods do not efficiently capture this uncertainty; nor can these methods scale to clone trees with a large number of subclonal populations. Here, we formalize the notion of a partially-defined clone tree (partial clone tree for short) that defines a subset of the pairwise ancestral relationships in a clone tree, thereby implicitly representing the set of all clone trees that have these defined pairwise relationships. Also, we introduce a special partial clone tree, the Maximarfect match to the MAR in most of the other cases. Notably, SubMARine runs in less than 70 seconds on a single thread with less than one Gb of memory on all datasets presented in this paper, including ones with 50 nodes in a clone tree. On the real-world data, SubMARine almost perfectly recovers the previously reported trees and identifies minor errors made in the expert-driven reconstructions of those trees. The freely-available open-source code implementing SubMARine can be downloaded at https//github.com/morrislab/submarine.FST and kinship are key parameters often estimated in modern population genetics studies in order to quantitatively characterize structure and relatedness. Kinship matrices have also become a fundamental quantity used in genome-wide association studies and heritability estimation. The most frequently-used estimators of FST and kinship are method-of-moments estimators whose accuracies depend strongly on the existence of simple underlying forms of structure, such as the independent subpopulations model of non-overlapping, independently evolving subpopulations. However, modern data sets have revealed that these simple models of structure likely do not hold in many populations, including humans. In this work, we analyze the behavior of these estimators in the presence of arbitrarily-complex population structures, which results in an improved estimation framework specifically designed for arbitrary population structures. After generalizing the definition of FST to arbitrary population structures and establishing a framework for assessing bias and consistency of genome-wide estimators, we calculate the accuracy of existing FST and kinship estimators under arbitrary population structures, characterizing biases and estimation challenges unobserved under their originally-assumed models of structure. We then present our new approach, which consistently estimates kinship and FST when the minimum kinship value in the dataset is estimated consistently. We illustrate our results using simulated genotypes from an admixture model, constructing a one-dimensional geographic scenario that departs nontrivially from the independent subpopulations model. Our simulations reveal the potential for severe biases in estimates of existing approaches that are overcome by our new framework. This work may significantly improve future analyses that rely on accurate kinship and FST estimates.The fitness landscape is a concept commonly used to describe evolution towards optimal phenotypes. Linsitinib inhibitor It can be reduced to mechanistic detail using genome-scale models (GEMs) from systems biology. We use recently developed GEMs of Metabolism and protein Expression (ME-models) to study the distribution of Escherichia coli phenotypes on the rate-yield plane. We found that the measured phenotypes distribute non-uniformly to form a highly stratified fitness landscape. Systems analysis of the ME-model simulations suggest that this stratification results from discrete ATP generation strategies. Accordingly, we define “aero-types”, a phenotypic trait that characterizes how a balanced proteome can achieve a given growth rate by modulating 1) the relative utilization of oxidative phosphorylation, glycolysis, and fermentation pathways; and 2) the differential employment of electron-transport-chain enzymes. This global, quantitative, and mechanistic systems biology interpretation of fitness landscape formed upon proteome allocation offers a fundamental understanding of bacterial physiology and evolution dynamics.