Activity

  • Hede Cash posted an update 6 days, 6 hours ago

    Moreover, a simplified field programable gate array (FPGA) hardware implementation for the channel aware system scheduler is presented. The implementation results show that the consumed power for the proposed scheduler is 98.5 mW and the maximum processing clock speed is 190 MHz.Background Traditionally, the treatment options for unresectable locally advanced (UR-LA) and metastatic (UR-M) pancreatic ductal adenocarcinoma (PDAC) are palliative chemotherapy or chemoradiotherapy. The benefits of surgery for such patients remains unknown. The present study investigated clinical outcomes of patients undergoing conversion surgery (CS) after chemo(radiation)therapy for initially UR-PDAC. Methods We recruited patients with UR-PDAC who underwent chemo(radiation)therapy for initially UR-PDAC between April 2006 and September 2017. We analyzed resectability of CS, predictive parameters for overall survival, and early recurrence (within six months). Reversan datasheet Results A total of 468 patients (108 with UR-LA and 360 with UR-M PDAC) were enrolled in this study, of whom, 17 (15.7%) with UR-LA and 15 (4.2%) with UR-M underwent CS. The median survival time (MST) and five-year survival of patients who underwent CS was 37.2 months and 34%, respectively; significantly better than non-resected patients (nine months and 1%, respectively, p 35 mm), and lack of postoperative adjuvant chemotherapy were statistically significant predictive factors for early recurrence. Moreover, the site of pancreatic lesion and administration of postoperative adjuvant chemotherapy were statistically significant prognostic factors for overall survival in the patients undergoing CS. Conclusion Conversion surgery offers benefits in terms of increase survival for initially UR-PDAC for patients who responded favorably to chemo(radiation)therapy when combined with postoperative adjuvant chemotherapy.Due to the central role of DNA, its interactions with inorganic salts and small organic molecules are important. For example, such interactions play important roles in various fundamental cellular processes in living systems and are involved in many DNA-damage related diseases. Strategies to improve the sensitivity of existing techniques for studying DNA interactions with other molecules would be appreciated in situations where the interactions are too weak. Here we report our development and demonstration of bent DNA bows for amplifying, sensing, and detecting the interactions of 14 inorganic salts and small organic molecules with DNA. With the bent DNA bows, these interactions were easily visualized and quantified in gel electrophoresis, which were difficult to measure without bending. In addition, the strength of the interactions of DNA with the various salts/molecules were quantified using the modified Hill equation. This work highlights the amplification effects of the bending elastic energy stored in the DNA bows and the potential use of the DNA bows for quantitatively measuring DNA interactions with small molecules as simple economic methods; it may also pave the way for exploiting the bent DNA bows for other applications such as screening DNA-interacting molecules and drugs.This paper reviews the strategies that have been reported in the literature to attempt to reinforce glass-ionomer dental cements, both conventional and resin-modified. These cements are widely used in current clinical practice, but their use is limited to regions where loading is not high. Reinforcement might extend these applications, particularly to the posterior dentition. A variety of strategies have been identified, including the use of fibres, nanoparticles, and larger particle additives. One problem revealed by the literature survey is the limited extent to which researchers have used International Standard test methods. This makes comparison of results very difficult. However, it does seem possible to draw conclusions from this substantial body of work and these are (1) that powders with conventional particle sizes do not reinforce glass-ionomer cements, (2) certain fibres and certain nanoparticles give distinct improvements in strength, and (3) in the case of the nanoparticles these improvements are associated with differences in the morphology of the cement matrix, in particular, a reduction in the porosity. Despite these improvements, none of the developments has yet been translated into clinical use.The effective use of fusion inhibitor peptides against cervical and colorectal infections requires the development of sustained release formulations. In this work we comparatively study two different formulations based on polymeric nanoparticles and lipid vesicles to propose a suitable delivery nanosystem for releasing an HIV-1 fusion inhibitor peptide in vaginal mucosa. Polymeric nanoparticles of poly-d,l-lactic-co-glycolic acid (PLGA) and lipid large unilamellar vesicles loaded with the inhibitor peptide were prepared. Both formulations showed average sizes and polydispersity index values corresponding to monodisperse systems appropriate for vaginal permeation. High entrapment efficiency of the inhibitor peptide was achieved in lipid vesicles, which was probably due to the peptide’s hydrophobic nature. In addition, both nanocarriers remained stable after two weeks stored at 4 °C. While PLGA nanoparticles (NPs) did not show any delay in peptide release, lipid vesicles demonstrated favorably prolonged release of the peptide. Lipid vesicles were shown to improve the retention of the peptide on ex vivo vaginal tissue in a concentration sufficient to exert its pharmacological effect. Thus, the small size of lipid vesicles, their lipid-based composition as well as their ability to enhance peptide penetration on vaginal tissue led us to consider this formulation as a better nanosystem than polymeric nanoparticles for the sustained delivery of the HIV-1 fusion inhibitor peptide in vaginal tissues.Mutations within the Leucine-Rich Repeat Kinase 2 (LRRK2) gene are the most common genetic cause of autosomal and sporadic Parkinson’s disease (PD). LRRK2 is a large multidomain kinase that has reported interactions with several membrane proteins, including Rab and Endophilin, and has recently been proposed to function as a regulator of vesicular trafficking. It is unclear whether or how the spatiotemporal organization of the protein is altered due to LRRK2 activity. Therefore, we utilized fluctuation-based microscopy along with FLIM/FRET to examine the cellular properties and membrane recruitment of WT LRRK2-GFP (WT) and the PD mutant G2019S LRRK2-GFP (G2019S). We show that both variants can be separated into two distinct populations within the cytosol; a freely diffusing population associated with monomer/dimer species and a slower, likely vesicle-bound population. G2019S shows a significantly higher propensity to self-associate in both the cytosol and membrane regions when compared to WT. G2019S expression also resulted in increased hetero-interactions with Endophilin A1 (EndoA1), reduced cellular vesicles, and altered clathrin puncta dynamics associated with the plasma membrane. This finding was associated with a reduction in transferrin endocytosis in cells expressing G2019S, which indicates disruption of endocytic protein recruitment near the plasma membrane. Overall, this study uncovered multiple dynamic alterations to the LRRK2 protein as a result of the G2019S mutation-all of which could lead to neurodegeneration associated with PD.Long noncoding RNAs (lncRNAs) are defined as RNAs longer than 200 nucleotides that do not encode proteins. Recent studies have demonstrated that numerous lncRNAs are expressed in humans and play key roles in the development of various types of cancers. Intriguingly, some lncRNAs have been demonstrated to be involved in endocrine therapy resistance for breast cancer through their own mechanisms, suggesting that lncRNAs could be promising new biomarkers and therapeutic targets of breast cancer. Here, we summarize the functions and mechanisms of lncRNAs related to the endocrine therapy resistance of breast cancer.Non-bacterial prostatitis is an inflammatory disease that is difficult to treat. Oligonucleotide aptamers are well known for their stability and flexibility in conjugating various inflammatory molecules. In this study, we investigated the effects of inflammatory cytokine-targeting aptamers (ICTA), putative neutralizers of TNF-alpha and IL-1 beta activation, on local carrageenan-induced prostate inflammation, allodynia, and hyperalgesia in rats. In vitro evaluation confirmed the binding capability of ICTA. Intraprostatic injection of carrageenan or control vehicle was performed in six-week-old rats, and ICTA (150 µg) or vehicle was administered in the prostate along with carrageenan injection. The von Frey filament test was performed to determine mechanical allodynia, and prostate inflammation was examined seven days after drug administration. Local carrageenan administration resulted in a reduction of the tactile threshold. The levels of mononuclear cell infiltration, pro-inflammatory cytokine interleukin-1 beta (b), caspase-1 (casp-1), and Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing proteins 1 and 3 (NALP1 and NALP3) in the prostate of rats were increased seven days after carrageenan injection. Treatment with ICTA significantly attenuated the carrageenan-induced hyperalgesia and reduced the elevated levels of proteins including TNF-a and IL-1b in the rats. Apoptosis markers, B-cell lymphoma 2-associated X protein (Bax) and caspase-3, were elevated in ICTA-treated Chronic pelvic pain syndrome (CPPS) rats. These results suggest that ICTA provides protection against local carrageenan-induced enhanced pain sensitivity, and that the neutralization of proinflammatory cytokines may result in inflammatory cell apoptosis.Air quality, water pollution, and radiation pollution are major factors that pose genuine challenges in the environment. Suitable monitoring is necessary so that the world can achieve sustainable growth, by maintaining a healthy society. In recent years, the environment monitoring has turned into a smart environment monitoring (SEM) system, with the advances in the internet of things (IoT) and the development of modern sensors. Under this scenario, the present manuscript aims to accomplish a critical review of noteworthy contributions and research studies on SEM, that involve monitoring of air quality, water quality, radiation pollution, and agriculture systems. The review is divided on the basis of the purposes where SEM methods are applied, and then each purpose is further analyzed in terms of the sensors used, machine learning techniques involved, and classification methods used. The detailed analysis follows the extensive review which has suggested major recommendations and impacts of SEM research on the basis of discussion results and research trends analyzed. The authors have critically studied how the advances in sensor technology, IoT and machine learning methods make environment monitoring a truly smart monitoring system. Finally, the framework of robust methods of machine learning; denoising methods and development of suitable standards for wireless sensor networks (WSNs), has been suggested.