-
Hardin Nunez posted an update 2 weeks, 2 days ago
A lipid nanoparticle (LNP) formulation is a state-of-the-art delivery system for genetic drugs such as DNA, mRNA, and siRNA, which is successfully applied to COVID-19 vaccines and gains tremendous interest in therapeutic applications. Despite its importance, a molecular-level understanding of the LNP structures and dynamics is still lacking, which makes a rational LNP design almost impossible. In this work, we present an extension of CHARMM-GUI Membrane Builder to model and simulate all-atom LNPs with various (ionizable) cationic lipids and PEGylated lipids (PEG-lipids). These new lipid types can be mixed with any existing lipid types with or without a biomolecule of interest, and the generated systems can be simulated using various molecular dynamics engines. As a first illustration, we considered model LNP membranes with DLin-KC2-DMA (KC2) or DLin-MC3-DMA (MC3) without PEG-lipids. The results from these model membranes are consistent with those from the two previous studies albeit with mild accumulation of neutral MC3 in the bilayer center. To demonstrate Membrane Builder ’s capability of building a realistic LNP patch, we generated KC2- or MC3-containing LNP membranes with high concentrations of cholesterol and ionizable cationic lipids together with 2 mol% PEG-lipids. We observe that PEG-chains are flexible, which can be more preferentially extended laterally in the presence of cationic lipids due to the attractive interactions between their head groups and PEG oxygen. The presence of PEG-lipids also relaxes the lateral packing in LNP membranes, and the area compressibility modulus ( K A ) of LNP membranes with cationic lipids fit into typical K A of fluid-phase membranes. Interestingly, the interactions between PEG oxygen and head group of ionizable cationic lipids induce a negative curvature. We hope that this LNP capability in Membrane Builder can be useful to better characterize various LNPs with or without genetic drugs for a rational LNP design.Companion animals are susceptible to SARS-CoV-2 infection and sporadic cases of pet infections have occurred in the United Kingdom. Here we present the first large-scale serological survey of SARS-CoV-2 neutralising antibodies in dogs and cats in the UK. Results are reported for 688 sera (454 canine, 234 feline) collected by a large veterinary diagnostic laboratory for routine haematology during three time periods; pre-COVID-19 (January 2020), during the first wave of UK human infections (April-May 2020) and during the second wave of UK human infections (September 2020-February 2021). Both pre-COVID-19 sera and those from the first wave tested negative. However, in sera collected during the second wave, 1.4% (n=4) of dogs and 2.2% (n=2) cats tested positive for neutralising antibodies. 11-deoxojervine The low numbers of animals testing positive suggests pet animals are unlikely to be a major reservoir for human infection in the UK. However, continued surveillance of in-contact susceptible animals should be performed as part of ongoing population health surveillance initiatives.Native mass spectrometry (MS) enjoyed tremendous success in the past two decades in a wide range of studies aiming at understanding the molecular mechanisms of physiological processes underlying a variety of pathologies and accelerating the drug discovery process. However, the success record of native MS has been surprisingly modest with respect to the most recent challenge facing the biomedical community — the novel coronavirus infection (COVID-19). The major reason for the paucity of successful studies that use native MS to target various aspects of SARS-CoV-2 interaction with its host is the extreme degree of structural heterogeneity of the viral protein playing a key role in the host cell invasion. Indeed, the SARS-CoV-2 spike protein (S-protein) is extensively glycosylated, presenting a formidable challenge for native mass spectrometry (MS) as a means of characterizing its interactions with both the host cell-surface receptor ACE2 and the drug candidates capable of disrupting this interaction. In this work we evaluate the utility of native MS complemented with the experimental methods using gas-phase chemistry (limited charge reduction) to obtain meaningful information on the association of the S1 domain of the S-protein with the ACE2 ectodomain, and the influence of a small synthetic heparinoid on this interaction. Native MS reveals the presence of several different S1 oligomers in solution and allows the stoichiometry of the most prominent S1/ACE2 complexes to be determined. This enables meaningful interpretation of the changes in native MS that are observed upon addition of a small synthetic heparinoid (the pentasaccharide fondaparinux) to the S1/ACE2 solution, confirming that the small polyanion destabilizes the protein/receptor binding.Background A novel coronavirus, SARS-CoV-2 (known as COVID-19), spread rapidly around the world, affecting all and creating an ongoing global pandemic. In the United States, Latinx, African American, and Indigenous populations across the country have been disproportionately affected by COVID-19 cases and death rates. An examination of the perceptions and beliefs about the spread of the virus, COVID-19 testing, and vaccination amongst racial/ethnic minority groups is needed in order to alleviate the widespread disparity in new cases and deaths. Methods From November to December 2020 the research team conducted focus groups with members of Latinx farm-working communities in the Eastern Coachella Valley, located in the inland southern California desert region. A total of seven focus groups, six in Spanish and one in Purépecha, with a total of 55 participants were conducted. Topics covered include knowledge of the coronavirus, COVID-19 testing and vaccination. Results Using theme identification techniques, the findings identify structural factors that underly perceptions held by immigrant, migrant, and indigenous Latinx community members about COVID-19, which, in turn, shape attitudes and behaviors related to COVID-19 testing and vaccination. Common themes that emerged across focus groups include misinformation, lack of trust in institutions, and insecurity around employment and residency. Conclusions This racial/ethnic minority population is structurally vulnerable to historical and present-day inequalities that put them at increased risk of COVID-19 exposure, morbidity, and mortality. Findings from the focus groups indicate a significant need for interventions that decrease structural vulnerabilities by addressing issues of (dis)trust in government and public health among this population.