Activity

  • Hyde Church posted an update 3 hours, 12 minutes ago

    In order to secure replicability, and adherence to the FAIR principles, substantial changes need to be brought about to restore the practice of collecting and curating specimens, to educate students of their importance, and to properly fund the herbaria which house them.Environmental contamination by pharmaceuticals is global, substantially altering crucial behaviours in animals and impacting on their reproduction and survival. A key question is whether the consequences of these pollutants extend beyond mean behavioural changes, restraining differences in behaviour between individuals. In a controlled, two-year, multigenerational experiment with independent mesocosm populations, we exposed guppies (Poecilia reticulata) to environmentally realistic levels of the ubiquitous pollutant fluoxetine (Prozac). Fish (unexposed n = 59, low fluoxetine n = 57, high fluoxetine n = 58) were repeatedly assayed on four separate occasions for activity and risk-taking behaviour. Fluoxetine homogenized individuals’ activity, with individual variation in populations exposed to even low concentrations falling to less than half that in unexposed populations. To understand the proximate mechanism underlying these changes, we tested the relative contribution of variation within and between individuals to the overall decline in individual variation. We found strong evidence that fluoxetine erodes variation in activity between but not within individuals, revealing the hidden consequences of a ubiquitous contaminant on phenotypic variation in fish-likely to impair adaptive potential to environmental change.Responses to climate change are particularly complicated in species that engage in symbioses, as the niche of one partner may be modified by that of the other. We explored thermal traits in gut symbionts of honeybees and bumblebees, which are vulnerable to rising temperatures. In vitro assays of symbiont strains isolated from 16 host species revealed variation in thermal niches. Strains from bumblebees tended to be less heat-tolerant than those from honeybees, possibly due to bumblebees maintaining cooler nests or inhabiting cooler climates. Overall, however, bee symbionts grew at temperatures up to 44°C and withstood temperatures up to 52°C, at or above the upper thermal limits of their hosts. While heat-tolerant, most strains of the symbiont Snodgrassella grew relatively slowly below 35°C, perhaps because of adaptation to the elevated body temperatures that bees maintain through thermoregulation. In a gnotobiotic bumblebee experiment, Snodgrassella was unable to consistently colonize bees reared at 29°C under conditions that limit thermoregulation. Thus, host thermoregulatory behaviour appears important in creating a warm microenvironment for symbiont establishment. Bee-microbiome-temperature interactions could affect host health and pollination services, and inform research on the thermal biology of other specialized gut symbionts.Studies increasingly show that social connectedness plays a key role in determining survival, in addition to natural and anthropogenic environmental factors. Few studies, however, integrated social, non-social and demographic data to elucidate what components of an animal’s socio-ecological environment are most important to their survival. Female giraffes (Giraffa camelopardalis) form structured societies with highly dynamic group membership but stable long-term associations. We examined the relative contributions of sociability (relationship strength, gregariousness and betweenness), together with those of the natural (food sources and vegetation types) and anthropogenic environment (distance from human settlements), to adult female giraffe survival. We tested predictions about the influence of sociability and natural and human factors at two social levels the individual and the social community. Survival was primarily driven by individual- rather than community-level social factors. Gregariousness (the number of other females each individual was observed with on average) was most important in explaining variation in female adult survival, more than other social traits and any natural or anthropogenic environmental factors. For adult female giraffes, grouping with more other females, even as group membership frequently changes, is correlated with better survival, and this sociability appears to be more important than several attributes of their non-social environment.Induced prey defences against consumers are conspicuous in microbes, plants and animals. In toxigenic prey, a defence fitness cost should result in a trade-off between defence expression and individual growth. Yet, previous experimental work has failed to detect such induced defence cost in toxigenic phytoplankton. We measured a potential direct fitness cost of grazer-induced toxin production in a red tide dinoflagellate prey using relative gene expression (RGE) of a mitotic cyclin gene (cyc), a marker that correlates to cell growth. This approach disentangles the reduction in cell growth from the defence cost from the mortality by consumers. Treatments where the dinoflagellate Alexandrium catenella were exposed to copepod grazers significantly increased toxin production while decreasing RGE of cyc, indicating a defence-growth trade-off. The defence fitness cost represents a mean decrease of the cell growth rate of 32%. Simultaneously, we estimate that the traditional method to measure mortality loss by consumers is overestimated by 29%. The defence appears adaptive as the prey population persists in quasi steady state after the defence is induced. Our approach provides a novel framework to incorporate the fitness cost of defence in toxigenic prey-consumer interaction models.Genetic bottlenecks can limit the success of populations colonizing new ranges. However, successful colonizations can occur despite bottlenecks, a phenomenon known as the genetic paradox of invasion. learn more Eusocial Hymenoptera such as bumblebees (Bombus spp.) should be particularly vulnerable to genetic bottlenecks, since homozygosity at the sex-determining locus leads to costly diploid male production (DMP). The Tree Bumblebee (Bombus hypnorum) has rapidly colonized the UK since 2001 and has been highlighted as exemplifying the genetic paradox of invasion. Using microsatellite genotyping, combined with the first genetic estimates of DMP in UK B. hypnorum, we tested two alternative genetic hypotheses (‘bottleneck’ and ‘gene flow’ hypotheses) for B. hypnorum’s colonization of the UK. We found that the UK population has not undergone a recent severe genetic bottleneck and exhibits levels of genetic diversity falling between those of widespread and range-restricted Bombus species. Diploid males occurred in 15.4% of reared colonies, leading to an estimate of 21.