Activity

  • Peters Buchanan posted an update 3 days, 14 hours ago

    We conclude that the combination of 5-FU and Mito-FF exerts potent antineoplastic activity against gastric cancer cells, primarily by promoting ROS generation and suppressing the activities of antioxidant enzymes.Background From March to May 2020, lockdown measures were adopted in Italy to contain the epidemic of the novel Coronavirus. People were forced to restrict their movement and social contacts, therefore having a higher risk of inactivity. This study, carried out among Italian undergraduates, explored their sedentary and physical activities (PA) during the lockdown with respect to their previous habits. Methods An electronic questionnaire was administered once to students attending three Italian universities after the end of lockdown. Results A total of 1430 students (mean age 22.9 ± 3.5 years, 65.5% females) completed the questionnaire. All the sedentary behaviors increased significantly, and all the physical activities decreased significantly during the lockdown. Time spent using electronic devices showed the highest increase (+52.4 min/day), and walking the greatest decrease (-365.5 min/week). Being younger than 22 years old, female, and previously active, attending the universities of Naples and Rome and having at least one graduate parent were associated with the achievement of recommended levels of PA even during the lockdown. Conclusions This study highlights the reduction of PA among Italian undergraduates in the course of home-confinement due to the CoViD-19 pandemic. The practice of adequate PA during the lockdown was mainly associated with the previous adoption of an active lifestyle. Promoting active lifestyles during the non-pandemic period may have had positive effects also in case of lockdown.Thermoplastic Polyurethane (TPU) is a unique tailorable material due to the interactions of hard and soft segments within the block-copolymer chain. Therefore, various products can be created out of this material. A general trend towards a circular economy with regards to sustainability in combination with TPU being comparably expensive is of high interest to recycle production as well as post-consumer wastes. A systematic study investigating the property changes of TPU is provided, focusing on two major aspects. The first aspect focuses on characterizing the change of basic raw material properties through recycling. Gel permeation chromatography (GPC) and processing load during extrusion indicate a decrease in molar mass and consequently viscosity with an increasing number of recycling cycles. This leads to a change in morphology at lower molar mass, characterized by differential scanning calorimetry (DSC) and visualized by atomic force microscope (AFM). The change in molar mass and morphology with increasing number of recycling cycles has an impact on the material performance under tensile stress. The second aspect describes processing of the recycled TPU to nonwoven fabrics utilizing melt blowing, which are evaluated with respect to relevant mechanical properties and related to molecular characteristics. The molar mass turns out to be the governing factor regarding mechanical performance and processing conditions for melt blown products.In healthcare, physical activity can be monitored in two ways self-monitoring by the patient himself or external monitoring by health professionals. Regarding self-monitoring, wearable activity trackers allow automated passive data collection that educate and motivate patients. Wearing an activity tracker can improve walking time by around 1500 steps per day. However, there are concerns about measurement accuracy (e.g., lack of a common validation protocol or measurement discrepancies between different devices). For external monitoring, many innovative electronic tools are currently used in rheumatology to help support physician time management, to reduce the burden on clinic time, and to prioritize patients who may need further attention. In inflammatory arthritis, such as rheumatoid arthritis, regular monitoring of patients to detect disease flares improves outcomes. In a pilot study applying machine learning to activity tracker steps, we showed that physical activity was strongly linked to disease flares and that patterns of physical activity could be used to predict flares with great accuracy, with a sensitivity and specificity above 95%. Thus, automatic monitoring of steps may lead to improved disease control through potential early identification of disease flares. However, activity trackers have some limitations when applied to rheumatic patients, such as tracker adherence, lack of clarity on long-term effectiveness, or the potential multiplicity of trackers.Herein we investigate the usage of principal component analysis (PCA) and canonical variate analysis (CVA), in combination with the F factor clustering metric, for the a priori tailored selection of the optimal sensor array for a given electronic tongue (ET) application. The former allows us to visually compare the performance of the different sensors, while the latter allows us to numerically assess the impact that the inclusion/removal of the different sensors has on the discrimination ability of the ET. The proposed methodology is based on the measurement of a pure stock solution of each of the compounds under study, and the posterior analysis by PCA/CVA with stepwise iterative removal of the sensors that demote the clustering when retained as part of the array. To illustrate and assess the potential of such an approach, the quantification of paracetamol, ascorbic acid, and uric acid mixtures were chosen as the study case. Initially, an array of eight different electrodes was considered, from which an optimal array of four sensors was derived to build the quantitative ANN model. Finally, the performance of the optimized ET was benchmarked against the results previously reported for the analysis of the same mixtures, showing improved performance.Recently, we reported an inhibitory effect of guanine substitutions on the conformational switch from antiparallel to parallel quadruplexes (G4) induced by dehydrating agents. As a possible cause, we proposed a difference in the sensitivity of parallel and antiparallel quadruplexes to the guanine substitutions in the resulting thermodynamic stability. Reports on the influence of guanine substitutions on the biophysical properties of intramolecular parallel quadruplexes are rare. Moreover, such reports are often complicated by the multimerisation tendencies of parallel quadruplexes. Selleckchem NRD167 To address this incomplete knowledge, we employed circular dichroism spectroscopy (CD), both as stopped-flow-assisted fast kinetics measurements and end-point measurements, accompanied by thermodynamic analyses, based on UV absorption melting profiles, and electrophoretic methods. We showed that parallel quadruplexes are significantly more sensitive towards guanine substitutions than antiparallel ones. Furthermore, guanine-substituted variants, which in principle might correspond to native genomic sequences, distinctly differ in their biophysical properties, indicating that the four guanines in each tetrad of parallel quadruplexes are not equal.