-
Reynolds Pearson posted an update 1 week, 2 days ago
The experimental results show that the measured removal function is in good agreement with that obtained by numerical simulation. Compared with the circular polishing trajectory, the random-like Lissajous polishing trajectory can significantly improve the material removal rate, and there are no obvious periodic polishing marks on the workpiece surface.A compact near-eye visor (NEV) system that can guide light from a display to the eye could transform augmented reality (AR) technology. Unfortunately, existing implementations of such an NEV either suffer from small field of view or chromatic aberrations. See-through quality and bulkiness further make the overall performance of the visors unsuitable for a seamless user experience. Metasurfaces are an emerging class of nanophotonic elements that can dramatically reduce the size of optical elements while enhancing functionality. In this paper, we present a design of composite metasurfaces for an ultracompact NEV. We simulate the performance of a proof-of-principle visor corrected for chromatic aberrations while providing a large display field of view (>77∘ both horizontally and vertically) and good see-through quality [>70% transmission and less than a wavelength root mean-square (RMS) wavefront error over the whole visible wavelength range] as needed for an immersive AR experience.In this paper, a multicomponent gas detection system based on photoacoustic spectroscopy (PAS) is proposed with a combination of frequency division multiplexing (FDM) and time division multiplexing (TDM), combining a resonance photoacoustic cell and broadband microphone. A PAS gas cell with a wide frequency response bandwidth was used to achieve the FDM by selecting a specific modulation frequency of each component gas. The sawtooth wave driver current of each laser was output at a constant time interval for achieving the TDM. Compared with the laser channel control using a photoswitch, the driver current control was a simpler and more convenient means to implement TDM. The four gas components of methane (CH4), water (H2O) vapor, carbon dioxide (CO2), and acetylene (C2H2) were selected as sample gases for testing the feasibility of the method. The experimental results showed that the gas detection limits of CH4, H2O vapor, CO2, and C2H2 were 75.435, 2.502, 341.960, and 4.284 ppm, respectively. In addition, the linear fittings of gas concentration were 0.99386, 0.99772, 0.98995, and 0.98955, respectively.We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope, allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors and the cold optics that are now being built. We describe nonsequential ray tracing used to inform the design of the cold optics, including absorbers internal to each optics tube. We discuss ray tracing simulations of the telescope structure that allow us to determine geometries that minimize detector loading and mitigate spurious near-field effects that have not been resolved by the internal baffling. We also describe physical optics simulations, performed over a range of frequencies and field locations, that produce estimates of monochromatic far-field beam patterns, which in turn are used to gauge general optical performance. Finally, we describe simulations that shed light on beam sidelobes from panel gap diffraction.Digital holographic microscopy (DHM) is a technique that has high potential for analyzing biological samples and has been successfully applied to the study of cells and cell lines providing information about important parameters such as refractive index, morphology, and dry mass, among others; it has also found applicability to study the effects of therapeutic treatments. Finding the size and shape of cells is important since they tend to change in the presence of some pathologies. In this research work, we obtain the morphology thickness and refractive index of the A375 melanoma cell line through a slight tilting of the cell in a DHM setup. Further, the development of a novel mathematical expression based on this tilt and in the optical phase difference is presented. We show images of melanoma cells with the refractive index information included, and their morphology thickness as rendered from the holographic phase maps recorded with DHM.Ghost imaging (GI) can reconstruct the image of an object when the light traveling from the object to the detector is scattered or distorted. It is usually used in complicated environments, where the environmental light may heavily impact measurement. However, the traditional GI algorithm will be seriously affected if the environmental light changes during the measurement. In this paper, we analyze the frequency of environmental light and the light source, and introduce a digital filtering method that can improve the image quality of the traditional GI algorithm. Compared to the traditional GI algorithm, the digital filtering method can obtain an image even if the environmental light changes seriously.We present refined Sellmeier equations for AgGaSe2 that provide good reproduction of the phase-matching angles for frequency upconversion of CO2 laser radiation in the 1.7652-10.5910 µm range and for frequency downconversion in the 1.85-18 µm range thus far reported in the literature.A novel fiber-optic Mach-Zehnder interferometer based on SnO2, MoS2, SnO2/MoS2, and SnO2-MoS2 sensing film for cadmium-ion (Cd2+) detection is proposed and fabricated. The photonic-crystal fiber (PCF) is sandwiched between the no-core-fiber-1 (NCF1) and no-core-fiber-2 (NCF2), forming the Mach-Zehnder interferometer with the NCF1-PCF-NCF2 structure, which is regarded as the sensing unit. The SnO2, MoS2, SnO2/MoS2, and SnO2-MoS2 sensing films are, respectively, coated on the surface of two NCFs’ claddings. The comparative experiment results of the sensors with four membranes (SnO2, MoS2, SnO2/MoS2, SnO2-MoS2) show that the sensors have good sensing performance for Cd2+ in the concentration range of 0-100 µM. When these sensing films adsorbed Cd2+, the monitoring wavelength shows blueshift of 0.6931 nm, 1.0252 nm, 1.9505 nm, respectively, and redshift of 3.0258 nm, and the sensitivities are 6.931 pm/µM, 10.252 pm/µM, 19.505 pm/µM, and 30.258 pm/µM, respectively. The sensor with SnO2-MoS2 bilayer film exhibits the optimal response to Cd2+ with excellent selectivity and stability. The proposed sensor has the advantages of simple structure, easy fabrication, small size, etc., having potential application in the monitoring of Cd2+ in aqueous solution.Spatial light modulators (SLMs) are key research tools in several contemporary applied optics research domains. In this paper, we present the argument that an open platform for interacting with SLMs would dramatically increase their accessibility to researchers. We introduce HoloBlade, an open-hardware implementation of an SLM driver-stack, and provide a detailed exposition of HoloBlade’s architecture, key components, and detailed design. An optical verification rig is constructed to demonstrate that HoloBlade can provide Fourier imaging capability in a 4f system. Finally, we discuss HoloBlade’s future development roadmap and the opportunities that it presents as a research tool for applied optics.This feature issue of JOSA A and Applied Optics is dedicated to the fourteenth OSA Topical Meeting “Digital Holography and 3D Imaging” held 22-26 June 2020 in a virtual meeting. The conference, taking place every year, is a focal point for global technical interchange in the field of digital holography and 3D imaging, providing premier opportunities for people working in the field to present their new advances in research and development. Papers presented at the meeting highlight current research in digital holography and three-dimensional imaging, including interferometry, phase microscopy, phase retrieval, novel holographic processes, 3D and novel holographic displays, integral imaging, computer-generated holograms, compressive holography, 3D holographic display, AR display, full-field tomography, specific image and signal processing, and holography with various light sources, including coherent to incoherent and x-ray to terahertz waves. Techniques of digital holography and of 3D imaging have numerous applications, such as the state-of-the-art technological developments that are currently underway and have also stimulated further novel applications of digital holography and 3D imaging in biomedicine, deep learning, and scientific and industrial metrologies.To enhance the depth rendering ability of augmented reality (AR) display systems, a modulated moiré imaging technique is used to render the true three-dimensional (3D) images for AR display systems. 3D images with continuous depth information and large depth of field are rendered and superimposed on the real scene. find more The proposed AR system consists of a modulated moiré imaging subsystem and an optical combiner. The modulated moiré imaging subsystem employs modulated point light sources, a display device, and a microlens array to generate 3D images. A defocussing equal period moiré imaging structure is used, which gives a chance for the point light sources to modulate the depth position of 3D images continuously. The principles of the imaging system are deduced analytically. A custom-designed transparent off-axis spherical reflective lens is used as an optical combiner to project the 3D images into the real world. An experimental AR system that provides continuous 3D images with depth information ranging from 0.5 to 2.5 m is made to verify the feasibility of the proposed technique.The observation and study of defects of single-crystal multicomponent optical material is necessary to determine the qualitative characteristics and optical properties of a material and to diagnose its manufacturing procedures. This paper utilizes the digital IR-holography to measure the geometrical parameters, shape, and location of defects as well as to characterize them. The paper illustrates the examples of physical, chemical, and optical inhomogeneities. Also, the paper presents the results of the study of dynamic processes in optical elements under the influence of laser radiation with high power density. The possibility of using the digital holographic technology to determine the dynamics of optical breakdown in the ZnGeP2 single crystal is illustrated, namely, to estimate the speed and time of breakdown development, which can be used to interpret the mechanisms of breakdown development.Using intensity gradient- or sparsity-based focus metrics, the ability to accurately localize the three-dimensional (3D) position of a small object in a digital holographic reconstruction of a large field of view is hindered in the presence of multiple nearby objects. A more accurate alternative method for 3D localization, based on evaluation of the complex reconstructed volume, is proposed. Simulations and experimental data demonstrate a reduction in depth positional error for single objects and a notably improved axial resolution of multiple objects in close proximity.