Activity

  • Brooks Haaning posted an update 1 week, 5 days ago

    BB47. Antarlides A-F have novel 22-membered-ring macrocyclic structures, while antarlides G and H have 20-membered-ring structures. Both antarlides B and G showed potent AR antagonist activity in prostate cancer cells and could overcome resistance to enzalutamide.The large variety of 2D materials and their co-integration in van der Waals heterostructures enable innovative device engineering. In addition, their atomically thin nature promotes the design of artificial materials by proximity effects that originate from short-range interactions. Selleck Cy7 DiC18 Such a designer approach is particularly compelling for spintronics, which typically harnesses functionalities from thin layers of magnetic and non-magnetic materials and the interfaces between them. Here we provide an overview of recent progress in 2D spintronics and opto-spintronics using van der Waals heterostructures. After an introduction to the forefront of spin transport research, we highlight the unique spin-related phenomena arising from spin-orbit and magnetic proximity effects. We further describe the ability to create multifunctional hybrid heterostructures based on van der Waals materials, combining spin, valley and excitonic degrees of freedom. We end with an outlook on perspectives and challenges for the design and production of ultracompact all-2D spin devices and their potential applications in conventional and quantum technologies.Directed liquid motion has been conventionally mediated by functionalizing chemical inhomogeneity or texturing topological anisotropy on target surfaces. Here we show the self-propulsion of droplets that furcated in well-defined directions on piezoelectric single crystals in the absence of any apparent asymmetry or external force. By selecting the crystal plane to interface with the droplets, the thermoelastic-piezoelectric interplay yields intricate electric potential profiles, enabling various forms of self-propulsion including unidirectional, bifurcated and trifurcated. This effect originates from an anisotropic crystalline structure that generates contrasting macroscopic liquid behaviours and is observed with cold/hot and volatile droplets. Intrinsically oriented liquid motions have broad applicability in processes ranging from soft matter engineering, autonomous material delivery and thermal management to biochemical analysis.The antiviral cytokine interferon activates expression of interferon-stimulated genes to establish an antiviral state. Myxovirus resistance 2 (MX2, also known as MxB) is an interferon-stimulated gene that inhibits the nuclear import of HIV-1 and interacts with the viral capsid and cellular nuclear transport machinery. Here, we identified the myosin light chain phosphatase (MLCP) subunits myosin phosphatase target subunit 1 (MYPT1) and protein phosphatase 1 catalytic subunit-β (PPP1CB) as positively-acting regulators of MX2, interacting with its amino-terminal domain. We demonstrated that serine phosphorylation of the N-terminal domain at positions 14, 17 and 18 suppresses MX2 antiviral function, prevents interactions with the HIV-1 capsid and nuclear transport factors, and is reversed by MLCP. Notably, serine phosphorylation of the N-terminal domain also impedes MX2-mediated inhibition of nuclear import of cellular karyophilic cargo. We also found that interferon treatment reduces levels of phosphorylation at these serine residues and outline a homeostatic regulatory mechanism in which repression of MX2 by phosphorylation, together with MLCP-mediated dephosphorylation, balances the deleterious effects of MX2 on normal cell function with innate immunity against HIV-1.The development of innovative strategies for the synthesis of N-heterocyclic compounds is an important topic in organic synthesis. Ring expansion methods to form large N-heterocycles often involve the cycloaddition of strained aza rings with π bonds. However, in some cases such strategies suffer from some limitations owing to the difficulties in controlling the regioselectivity and the accessibility of specific π-bond synthons. Here, we report the development of a general ring expansion strategy that involves a formal cross-dimerization between three-membered aza heterocycles and three- and four-membered-ring ketones through synergistic bimetallic catalysis. These formal cross-dimerizations of two different strained rings are efficient and scalable, and provide a straightforward and broadly applicable means of assembling diverse N-heterocycles, such as 3-benzazepinones, dihydropyridinones and uracils, which are versatile units in numerous drugs and biologically active compounds. Preliminary mechanistic studies revealed that the C-C bond of strained ring ketones is first cleaved by the Pd0 species during the reaction.Baird’s rule predicts that molecules with 4n π electrons should be aromatic in the triplet state, but the realization of simple ring systems with such an electronic ground state has been stymied by these molecules’ tendency to distort into structures bearing a large singlet-triplet gap. Here, we show that the elusive benzene diradical dianion can be stabilized through creation of a binucleating ligand that enforces a tightly constrained inverse sandwich structure and direct magnetic exchange coupling. Specifically, we report the compounds [K(18-crown-6)(THF)2]2[M2(BzN6-Mes)] (M = Y, Gd; BzN6-Mes = 1,3,5-tris[2′,6′-(N-mesityl)dimethanamino-4′-tert-butylphenyl]benzene), which feature a trigonal ligand that binds one trivalent metal ion on each face of a central benzene dianion. Antiferromagnetic exchange in the Gd3+ compound preferentially stabilizes the triplet state such that it becomes the molecular ground state. Single-crystal X-ray diffraction data and nucleus-independent chemical shift calculations support aromaticity, in agreement with Baird’s rule.

    The increased availability of clinical pharmacogenetic (PGx) guidelines and decreasing costs for genetic testing have slowly led to increased utilization of PGx testing in clinical practice. Pre-emptive PGx testing, where testing is performed in advance of drug prescribing, is one means to ensure results are available at the time of prescribing decisions. However, the most efficient and effective methods to clinically implement this strategy remain unclear.

    In this report, we compare and contrast implementation strategies for pre-emptive PGx testing by 15 early-adopter institutions. We surveyed these groups, collecting data on testing approaches, team composition, and workflow dynamics, in addition to estimated third-party reimbursement rates.

    We found that while pre-emptive PGx testing models varied across sites, institutions shared several commonalities, including methods to identify patients eligible for testing, involvement of a precision medicine clinical team in program leadership, and the implementation of pharmacogenes with Clinical Pharmacogenetics Implementation Consortium guidelines available.