Activity

  • Golden Herrera posted an update 5 days, 22 hours ago

    The 2013-16 Ebola virus disease epidemic in west Africa caused international alarm due to its rapid and extensive spread resulting in a significant death toll and social unrest within the affected region. The large number of cases provided an opportunity to study the long-term kinetics of Zaire ebolavirus-specific immune response of survivors in addition to known contacts of those infected with the virus.

    In this observational cohort study, we worked with leaders of Ebola virus disease survivor associations in two regions of Guinea, Guéckédou and Coyah, to recruit survivors of Ebola virus disease, contacts from households of individuals known to have had Ebola virus disease, and individuals who were not knowingly associated with infected individuals or had not had Ebola virus disease symptoms to serve as negative controls. We did Zaire ebolavirus glycoprotein-specific T cell analysis on peripheral blood mononuclear cells (PBMCs) on location in Guinea and transported plasma and PBMCs back to Europe for ant-2-, and the mean response was 0·046% of total CD8+ T cells (95% CI 0·021-0·071). Additionally, both neutralising antibody and T cell responses were detected in six (9%) of 66 Ebola virus disease contacts. We also noted that four (3%) of 117 individuals with Ebola virus disease infections did not have circulating Ebola virus-specific antibodies 3 months after infection.

    The continuous high titre of neutralising antibodies and increased T cell response might support the concept of long-term protective immunity in survivors. The existence of antibody and T cell responses in contacts of individuals with Ebola virus disease adds further evidence to the existence of sub-clinical Ebola virus infection.

    US Food & Drug Administration, Horizon 2020 EU EVIDENT, Wellcome, UK Department for International Development.

    For the French translation of the abstract see Supplementary Materials section.

    For the French translation of the abstract see Supplementary Materials section.

    Seasonal influenza remains a substantial public health threat despite the availability of egg-derived and other vaccines. Plant-based manufacturing might address some of the limitations of current vaccines. We describe two phase 3 efficacy studies of a recombinant quadrivalent virus-like particle (QVLP) influenza vaccine manufactured in plants, one in adults aged 18-64 years (the 18-64 study) and one in older people aged 65 years and older (the 65-plus study).

    We did two randomised, observer-blind, multinational studies in the northern hemisphere in the 2017-18 (the 18-64 study) and 2018-19 (the 65-plus study) influenza seasons. The 18-64 study was done at 73 sites and the 65-plus study was done at 104 sites, both across Asia, Europe, and North America. In the 18-64 study, inclusion criteria were body-mass index less than 40 kg/m

    ; age 18-64 years at screening visit; and good health. In the 65-plus study, inclusion criteria were body-mass index of maximum 35 kg/m

    ; aged 65 years or older at screening viity endpoint with a relative vaccine efficacy of the QVLP vaccine for the prevention of influenza-like illness caused by any strain of 8·8% (-16·7 to 28·7). 263 (4·1%) of 6352 participants in the QVLP group versus 266 (4·2%) of 6366 in the QIV group had serious adverse events (one [<0·1%] vs two [<0·1%] were considered treatment-related); one (<0·1%) versus three (<0·1%) participants had severe treatment-related treatment-emergent adverse events.

    These efficacy studies are the first large-scale studies of any plant-derived human vaccine. Together, they show that the plant-derived QVLP vaccine can provide substantial protection against respiratory illness and influenza-like illness caused by influenza viruses in adults. QVLP vaccine was well tolerated and no major safety signal arose in participants who received QVLP vaccine across the two studies.

    Medicago.

    Medicago.Understanding immune responses to severe acute respiratory syndrome coronavirus 2 is crucial to understanding disease pathogenesis and the usefulness of bridge therapies, such as hyperimmune globulin and convalescent human plasma, and to developing vaccines, antivirals, and monoclonal antibodies. A mere 11 months ago, the canvas we call COVID-19 was blank. Scientists around the world have worked collaboratively to fill in this blank canvas. In this Review, we discuss what is currently known about human humoral and cellular immune responses to severe acute respiratory syndrome coronavirus 2 and relate this knowledge to the COVID-19 vaccines currently in phase 3 clinical trials.The COVID-19 pandemic has led to extensive morbidity and mortality throughout the world. Clinical features that drive SARS-CoV-2 pathogenesis in humans include inflammation and thrombosis, but the mechanistic details underlying these processes remain to be determined. In this study, we demonstrate endothelial disruption and vascular thrombosis in histopathologic sections of lungs from both humans and rhesus macaques infected with SARS-CoV-2. To define key molecular pathways associated with SARS-CoV-2 pathogenesis in macaques, we performed transcriptomic analyses of bronchoalveolar lavage and peripheral blood and proteomic analyses of serum. We observed macrophage infiltrates in lung and upregulation of macrophage, complement, platelet activation, thrombosis, and proinflammatory markers, including C-reactive protein, MX1, IL-6, IL-1, IL-8, TNFα, and NF-κB. These results suggest a model in which critical interactions between inflammatory and thrombosis pathways lead to SARS-CoV-2-induced vascular disease. Our findings suggest potential therapeutic targets for COVID-19.KRAS mutations are among the most common genetic alterations in lung, colorectal, and pancreatic cancers. Direct inhibition of KRAS oncoproteins has been a long-standing pursuit in precision oncology, one established shortly after the discovery of RAS mutations in human cancer cells nearly 40 years ago. Recent advances in medicinal chemistry have established inhibitors targeting KRAS(G12C), a mutation found in ∼13% of lung adenocarcinomas and, at a lower frequency, in other cancers. Preclinical studies describing their discovery and mechanism of action, coupled with emerging clinical data from patients treated with these drugs, have sparked a renewed enthusiasm in the study of KRAS and its therapeutic potential. Here, we discuss how these advances are reshaping the fundamental aspects of KRAS oncoprotein biology and the strides being made toward improving patient outcomes in the clinic.Machine learning that generates biological hypotheses has transformative potential, but most learning algorithms are susceptible to pathological failure when exploring regimes beyond the training data distribution. A solution to address this issue is to quantify prediction uncertainty so that algorithms can gracefully handle novel phenomena that confound standard methods. Here, we demonstrate the broad utility of robust uncertainty prediction in biological discovery. By leveraging Gaussian process-based uncertainty prediction on modern pre-trained features, we train a model on just 72 compounds to make predictions over a 10,833-compound library, identifying and experimentally validating compounds with nanomolar affinity for diverse kinases and whole-cell growth inhibition of Mycobacterium tuberculosis. Uncertainty facilitates a tight iterative loop between computation and experimentation and generalizes across biological domains as diverse as protein engineering and single-cell transcriptomics. More broadly, our work demonstrates that uncertainty should play a key role in the increasing adoption of machine learning algorithms into the experimental lifecycle.

    Recent advances in deep convolutional neural networks (CNNs) have led to remarkable results in digestive endoscopy. In this study, we aimed to develop CNN-based models for the differential diagnosis of benign esophageal protruded lesions using endoscopic images acquired during real clinical settings.

    We retrospectively reviewed the images from 1217 patients who underwent white-light endoscopy (WLE) and EUS between January 2015 and April 2020. Three deep CNN models were developed to accomplish the following tasks (1) identification of esophageal benign lesions from healthy controls using WLE images; (2) differentiation of 3 subtypes of esophageal protruded lesions (including esophageal leiomyoma [EL], esophageal cyst (EC], and esophageal papilloma [EP]) using WLE images; and (3) discrimination between EL and EC using EUS images. Six endoscopists blinded to the patients’ clinical status were enrolled to interpretall images independently. Their diagnostic performances were evaluated and compared with the CNN lesions using routinely obtained WLE and EUS images. Preliminary results combining the results from the models and the endoscopists underscored the potential of ensemble models for improved differentiation of lesions in real endoscopic settings.

    Our team established CNN-based methodologies to recognize benign esophageal protruded lesions using routinely obtained WLE and EUS images. Preliminary results combining the results from the models and the endoscopists underscored the potential of ensemble models for improved differentiation of lesions in real endoscopic settings.Cell permeable, small molecule inhibitors are powerful tools for interrogating kinase function and validating drug targets. In this issue of Cell Chemical Biology, Liu and colleagues (2020) describe the development of a toolkit containing a highly selective DCLK1 inhibitor and complementary DCLK1 mutants for interrogating DCLK1-dependent cellular processes.

    In early 2020, during the COVID-19 pandemic, New Zealand implemented graduated, risk-informed national COVID-19 suppression measures aimed at disease elimination. We investigated their impacts on the epidemiology of the first wave of COVID-19 in the country and response performance measures.

    We did a descriptive epidemiological study of all laboratory-confirmed and probable cases of COVID-19 and all patients tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in New Zealand from Feb 2 to May 13, 2020, after which time community transmission ceased. click here We extracted data from the national notifiable diseases database and the national SARS-CoV-2 test results repository. Demographic features and disease outcomes, transmission patterns (source of infection, outbreaks, household transmission), time-to-event intervals, and testing coverage were described over five phases of the response, capturing different levels of non-pharmaceutical interventions. Risk factors for severe outcomes (hospitalisare residency (adjusted OR 3·86 [1·59-9·35]), and Pacific peoples (adjusted OR 2·76 [1·14-6·68]) and Asian (2·15 [1·10-4·20]) ethnicities relative to European or other. Times from illness onset to notification and isolation progressively decreased and testing increased over the study period, with few disparities and increasing coverage of females, Māori, Pacific peoples, and lower socioeconomic groups.

    New Zealand’s response resulted in low relative burden of disease, low levels of population disease disparities, and the initial achievement of COVID-19 elimination.

    Ministry of Business Innovation and Employment Strategic Scientific Investment Fund, and Ministry of Health, New Zealand.

    Ministry of Business Innovation and Employment Strategic Scientific Investment Fund, and Ministry of Health, New Zealand.