Activity

  • Adcock Hopkins posted an update 1 day, 4 hours ago

    Neutrophilic asthma (NA) is characterized by neutrophil‑mediated inflammation and the presence of Th17 cells. However, the mechanisms underlying Th17 cell responses in NA remain unknown. The aim of the present study was to examine the effects of interleukin (IL)‑7 on Th17 cell responses in NA. A NA mouse model was sensitized by airway delivery of ovalbumin (OVA) and lipopolysaccharide and challenged with 1% OVA aerosol from day 21 for 3 consecutive days. Airway resistance was then measured to assess airway hyper‑responsiveness (AHR). Cells from bronchoalveolar lavage fluid (BALF) underwent Diff‑Quick and hematoxylin and eosin staining for classification. The levels of IL‑17 in the BALF were determined by ELISA. The effects of IL‑7 administration and STAT5 inhibition on Th17 cells were also characterized in vitro using splenic CD4+ T cells. Ki‑67, Bcl‑2 and activated caspase‑3 expression in differentiated Th17 cells were analyzed by flow cytometry. The mouse model of NA was characterized by increased AHR, elevated levels of IL‑17, high neutrophil counts in BALF, accumulated inflammatory cells in the lung and Th17 cell responses. IL‑7 promoted the expression of Ki‑67 and Bcl‑2 while reducing caspase‑3 expression. STAT5 inhibitor treatment decreased the levels of Ki‑67 and Bcl‑2, and resulted in increased expression of caspase‑3. These results suggested that the IL‑7/JAK/STAT5 signaling pathway may be involved in Th17 cell responses in NA.Glioblastoma is a highly malignant tumor that contains stem‑like cells known as glioma stem cells (GSCs), which lare associated with an increased risk of glioma occurrence, recurrence and poor prognosis. OGA inhibitor Circadian clock gene, period circadian clock 2 (PER2) expression has been revealed to be inhibited in various types of cancer. However, the precise role and potential mechanisms of PER2 in GSCs remains unclear. The present study demonstrated that PER2 mRNA and protein expression was downregulated in GSCs compared with non‑stem glioma cells, which indicated that PER2 could be involved in the malignant process of glioma. Furthermore, functional studies revealed that PER2 overexpression could induce GSC arrest at the G0/G1 phase and suppress their proliferation, stemness and invasion ability in vitro and in vivo. Subsequently, the Wnt/β‑catenin signaling pathway was identified as the target of PER2 in GSCs. These results indicated that PER2 plays a critical role in regulating the stemness of GSCs and provides a novel therapeutic target to overcome the effects of GSCs.Glioblastoma is a difficult disease to diagnose. Proteomic techniques are commonly applied in biomedical research, and can be useful for early detection, making an accurate diagnosis and reducing mortality. The relevance of mitochondria in brain development and function is well known; therefore, mitochondria may influence the development of glioblastoma. The T98G (with oxidative metabolism) and U87MG (with glycolytic metabolism) cell lines are considered to be useful glioblastoma models for studying these tumors and the role of mitochondria in key aspects of this disease, such as prognosis, metastasis and apoptosis. In the present study, principal component analysis of protein abundance data identified by liquid chromatography coupled to tandem mass spectrometry (LC‑MS/MS) and matrix‑assisted laser desorption/ionization‑time of flight mass spectrometry (MALDI‑TOF) from 2D gels indicated that representative mitochondrial proteins were associated with glioblastoma. The selected proteins were organized into T98G‑ and U87MG‑specific protein‑protein interaction networks to demonstrate the representativeness of both proteomic techniques. Gene Ontology overrepresentation analysis based on the relevant proteins revealed that mitochondrial processes were associated with metabolic changes, invasion and metastasis in glioblastoma, along with other non‑mitochondrial processes, such as DNA translation, chaperone responses and autophagy. Despite the lower resolution of 2D electrophoresis, principal component analysis yielded information of comparable quality to that of LC‑MS/MS. The present analysis pipeline described a specific and more complete metabolic status for each cell line, defined a clear mitochondrial performance for distinct glioblastoma tumors, and introduced a useful strategy to understand the heterogeneity of glioblastoma.Simvastatin is effective in the treatment of osteoporosis, partly through the inhibition of the adipogenesis of bone‑marrow derived mesenchymal stem cells (BMSCs). The present study focused on the mechanisms responsible for the inhibitory effects of simvastatin on adipogenesis and examined the effects of simvastatin on the expression of peroxisome proliferator‑activated receptor γ (PPARγ), chemerin, chemokine‑like receptor 1 (CMKLR1), G protein‑coupled receptor 1 (GPR1) and the adipocyte marker gene, adiponectin. BMSCs were isolated from 4‑week‑old female Sprague‑Dawley (SD) rats, and adipogenesis was measured by the absorbance values at 490 nm of Oil Red O dye. The expression of each gene was evaluated by western blot analysis or reverse transcription‑quantitative PCR (RT‑qPCR). The expression of chemerin increased during adipogenesis, while CMKLR1 exhibited a trend towards a decreased expression. On days 7 and 14, the simvastatin‑treated cells exhibited a downregulated expression of chemerin, whereas the upregulated expression of its receptor, CMKLR1 was observed. The results also revealed that CMKLR1 is required for adipogenesis and the simvastatin‑mediated inhibitory effect on adipogenesis. Simvastatin regulated adipogenesis by negatively modulating chemerin‑CMKLR1 signaling. Importantly, simvastatin stimulation inhibited the upregulation of PPARγ and PPARγ‑mediated chemerin expression to prevent adipogenesis. Treatment with the PPARγ agonist, rosiglitazone, partially reversed the negative regulatory effects of simvastatin. On the whole, the findings of the present study demonstrate that simvastatin inhibits the adipogenesis of BMSCs through the downregulation of PPARγ and subsequently prevents the PPARγ‑mediated induction of chemerin/CMKLR1 signaling.