Activity

  • Saunders Yates posted an update 1 week, 5 days ago

    umor surgery in a controlled laboratory environment and represents a crucial step in the understanding and training of expertise in neurosurgery.

    Cefiderocol (CID), also known as S-649266, a novel siderophore cephalosporin, possesses potent activity against multidrug-resistant aerobic Gram-negative bacteria (GNB). This study aimed to determine the in vitro activity of CID against two different sets of GNB i) a random sample of 213 clinical isolates, including 17 extended-spectrum beta-lactamase (ESBL) producers, obtained from intensive care unit patients with nosocomial infections collected during a multicentre surveillance study (set I); and ii) a group of 59 challenge GNB producing various types of carbapenemases (CP; set II).

    Minimum inhibitory concentrations (MICs) were determined using the microdilution method according to the standard ISO 20776-1. Iron-depleted medium was used for testing CID.

    CID inhibited 97.2% of set I isolates at the EUCAST susceptibility breakpoint of ≤2mg/L. The concentrations of CID inhibiting 50% and 90% (MIC

    ) of the Enterobacterales isolates (n=146) were 0.12/1.0 mg/L, with ESBL-positive isolates tending to exhibit higher MICs than ESBL-negative isolates to CID. MIC

    values of CID for isolates of the Acinetobacter baumannii group (n=13) and Pseudomonas aeruginosa (n=54) were 0.06/0.12 mg/L and 0.12/0.5 mg/L, respectively. Further, CID inhibited 88.1% of set II CP-producing isolates at ≤2 mg/L. All seven class D CP-producing Acinetobacterbaumannii were inhibited at ≤0.25 mg/L. MIC

    values for CP-producing Enterobacterales (n=30) and Pseudomonasaeruginosa (n=22) were 1/4 mg/L and 0.5/2 mg/L, respectively.

    CID showed potent activity against Acinetobacter baumannii, Enterobacterales and Pseudomonasaeruginosa, including CP-producing isolates. Overall, CID inhibited 259 of 272 (95.2%) GNB at ≤2 mg/L.

    CID showed potent activity against Acinetobacter baumannii, Enterobacterales and Pseudomonas aeruginosa, including CP-producing isolates. Overall, CID inhibited 259 of 272 (95.2%) GNB at ≤ 2 mg/L.As a Traditional Chinese Medicine, Artemisia annua L. (A. annua) has been used for the treatment of various diseases since ancient times, including intermittent fevers due to malaria, bone steaming and heat/fever arising from exhaustion, tuberculosis, lice, wounds, scabies, dysentery et al. With the discovery of artemisinin and its excellent anti-malarial activity, A. annua has received great attention. Recently, A. annua has been revealed to show inhibitory effects against parasites (e.g. Plasmodium, Toxoplasma gondii, Leishmania, Acanthamoeba, Schistosoma), viruses (e.g. hepatitis A virus, herpes simplex viruses 1 and 2, human immunodeficiency virus), fungi (Candida, Malassezia, Saccharomyces spp.) and bacteria (Enterococcus, Streptococcus, Staphylococcus, Bacillus, Listeria, Haemophilus, Escherichia, Pseudomonas, Klebsiella, Acinetobacter, Salmonella, Yersinia spp.). A. annua has also been reported to possess anti-inflammatory and anti-cancer actions and been employed for the treatment of osteoarthritis, leukemia, colon cancer, renal cell carcinoma, breast cancer, non-small cell lung cancer, prostate cancre and hepatoma. Besides, the immunoregulation, anti-adipogenic, anti-ulcerogenic, anti-asthmatic, anti-nociceptive and anti-osteoporotic activities of A. annua were also evaluated. Along these lines, this review summarizes the traditional application and modern pharmacological research of A. annua, providing novel insights of A. annua in the treatment of various diseases.The members of the organic anion transporter (OAT) family are mainly expressed in kidney, liver, placenta, intestine, and brain. These transporters play important roles in the disposition of clinical drugs, pesticides, signaling molecules, heavy metal conjugates, components of phytomedicines, and toxins, and therefore critical for maintaining systemic homeostasis. Alterations in the expression and function of OATs contribute to the intra- and inter-individual variability of the therapeutic efficacy and the toxicity of many drugs, and to many pathophysiological conditions. Consequently, the activity of these transporters must be highly regulated to carry out their normal functions. This review will present an update on the recent advance in understanding the cellular and molecular mechanisms underlying the regulation of renal OATs, emphasizing on the post-translational modification (PTM), the crosstalk among these PTMs, and the remote sensing and signaling network of OATs. Such knowledge will provide significant insights into the roles of these transporters in health and disease.Atopic diseases refer to common allergic inflammatory diseases such as atopic dermatitis (AD), allergic rhinitis (AR), and allergic asthma (AA). AD often develops in early childhood and may herald the onset of other allergic disorders such as food allergy (FA), AR, and AA. This progression of the disease is also known as the atopic march, and it goes hand in hand with a significantly impaired quality of life as well as a significant economic burden. Atopic diseases usually are considered as T helper type 2 (Th2) cell-mediated inflammatory diseases. Thymic stromal lymphopoietin (TSLP), an epithelium-derived pro-inflammatory cytokine, activates distinct immune and non-immune cells. It has been shown to be a master regulator of type 2 immune responses and atopic diseases. In experimental settings, the inhibition or knockout of TSLP signaling has shown great therapeutic potential. This, in conjunction with the increasing knowledge about the central role of TSLP in the pathogenesis of atopic diseases, has sparked an interest in TSLP as a druggable target. In this review, we will discuss the autocrine and paracrine effects of TSLP, how it regulates the tissue microenvironment and drives atopic diseases, which provide the rationale for the increasing interest in TSLP as a druggable target.Defects in innate immunity affect many different physiologic systems and several studies of patients with primary immunodeficiency disorders demonstrated the importance of innate immune system components in disease prevention or colonization of bacterial pathogens. To assess the role of the innate immune system on nasal colonization with Staphylococcus aureus, innate immune responses in pediatric S. aureus nasal persistent carriers (n = 14) and non-carriers (n = 15) were profiled by analyzing co-clustered gene sets (modules). We stimulated previously frozen peripheral blood mononuclear cells (PBMCs) from these subjects with i) a panel of TLR ligands, ii) live S. aureus (either a mixture of strains or stimulation with respective carriage isolates), or iii) heat-killed S. aureus. We found no difference in responses between carriers and non-carriers when PBMCs were stimulated with a panel of TLR ligands. selleck chemicals However, PBMC gene expression profiles differed between persistent and non-S. aureus carriers following stimulation with either live or dead S.