Activity

  • Krebs Martens posted an update 1 week, 2 days ago

    95 V vs SCE) was lower than Ru(bpy)32+-COOH (1.25 V vs SCE). Furthermore, the photonic crystals nanomembrane has the capability to enhance electrochemiluminescence. Thereafter, tetracycline antibiotic as a model compound was successfully detected via competitive immunoassay on GPCs electrodes with a detection limit of 0.075 pg/mL (S/N = 3), which has broad application prospects in the field of analysis and detection.This article primarily discusses the utility of vibrational perturbation theory for the prediction of X-H stretching vibrations with particular focus on the specific variant, second-order vibrational perturbation theory with resonances (VPT2+K). It is written as a tutorial, reprinting most important formulas and providing numerous simple examples. It discusses the philosophy and practical considerations behind vibrational simulations with VPT2+K, including but not limited to computational method selection, cost-saving approximations, approaches to evaluating intensity, resonance identification, and effective Hamiltonian structure. Particular attention is given to resonance treatments, beginning with simple Fermi dyads and gradually progressing to arbitrarily large polyads that describe both Fermi and Darling-Dennison resonances. VPT2+K combined with large effective Hamiltonians is shown to be a reliable framework for modeling the complicated CH stretching spectra of alkenes. An error is also corrected in the published analytic formula for the VPT2 transition moment between the vibrational ground state and triply excited states.Temperature coefficients (TCs) for either electrochemical cell voltages or potentials of individual electrodes have been widely utilized to study the thermal safety and cathode/anode phase changes of lithium (Li)-ion batteries. However, the fundamental significance of single electrode potential TCs is little known. In this work, we discover that the Li-ion desolvation process during Li deposition/intercalation is accompanied by considerable entropy change, which significantly contributes to the measured Li/Li+ electrode potential TCs. To explore this phenomenon, we compare the Li/Li+ electrode potential TCs in a series of electrolyte formulations, where the interaction between Li-ion and solvent molecules occurs at varying strength as a function of both solvent and anion species as well as salt concentrations. As a result, we establish correlations between electrode potential TCs and Li-ion solvation structures and further verify them by ab initio molecular dynamics simulations. We show that measurements of Li/Li+ electrode potential TCs provide valuable knowledge regarding the Li-ion solvation environments and could serve as a screening tool when designing future electrolytes for Li-ion/Li metal batteries.Critical limb ischemia (CLI) is a severe form of peripheral artery disease (PAD). It is featured by degenerated skeletal muscle and poor vascularization. During the development of CLI, the upregulated matrix metalloproteinase-2 (MMP-2) degrades muscle extracellular matrix to initiate the degeneration. Meanwhile, MMP-2 is necessary for blood vessel formation. It is thus hypothesized that appropriate MMP-2 bioactivity in ischemic limbs will not only attenuate muscle degeneration but also promote blood vessel formation. Herein, we developed ischemia-targeting poly(N-isopropylacrylamide)-based nanogels to specifically deliver an MMP-2 inhibitor CTTHWGFTLC (CTT) into ischemic limbs to tailor MMP-2 bioactivity. Besides acting as an MMP-2 inhibitor, CTT promoted endothelial cell migration under conditions mimicking the ischemic limbs. The nanogels were sensitive to the pH of ischemic tissues, allowing them to largely aggregate in the injured area. To help reduce nanogel uptake by macrophages and increase circulation time, the nanogels were cloaked with a platelet membrane. An ischemia-targeting peptide CSTSMLKA (CST) was further conjugated on the platelet membrane for targeted delivery of nanogels into the ischemic area. CTT gradually released from the nanogels for 4 weeks. The nanogels mostly accumulated in the ischemic area for 28 days. The released CTT preserved collagen in the muscle and promoted its regeneration. In addition, CTT stimulated angiogenesis. Four weeks after CLI, the blood flow and vessel density of the ischemic limbs treated with the nanogels were remarkably higher than the control groups without CTT release. Selleck PKI-587 These results demonstrate that the developed nanogel-based CTT release system has the potential to stimulate ischemic limb regeneration.The structures as building blocks for designing functional nanomaterials have fueled the development of versatile nanoprobes to understand local structures of noncrystalline specimens. Progress in analyzing structures of individual specimens with atomic scale accuracy has been notable recently. In most cases, however, only a limited number of specimens are inspected lacking statistics to represent the systems with structural inhomogeneity. Here, by employing single-particle imaging with X-ray free electron lasers and algorithms for multiple-model 3D imaging, we succeeded in investigating several thousand specimens in a couple of hours and identified intrinsic heterogeneities with 3D structures. Quantitative analysis has unveiled 3D morphology, facet indices, and elastic strain. The 3D elastic energy distribution is further corroborated by molecular dynamics simulations to gain mechanical insight at the atomic level. This work establishes a route to high-throughput characterization of individual specimens in large ensembles, hence overcoming statistical deficiency while providing quantitative information at the nanoscale.Napabucasin, undergoing multiple clinical trials, was reported to inhibit the signal transducer and transcription factor 3 (STAT3). To better elucidate its mechanism of action, we designed a napabucasin-based proteolysis targeting chimera (PROTAC), XD2-149 that resulted in inhibition of STAT3 signaling in pancreatic cancer cell lines without inducing proteasome-dependent degradation of STAT3. Proteomics analysis of XD2-149 revealed the downregulation of the E3 ubiquitin-protein ligase ZFP91. XD2-149 degrades ZFP91 with DC50 values in the nanomolar range. The cytotoxicity of XD2-149 was significantly, but not fully, reduced with ZFP91 knockdown providing evidence for its multi-targeted mechanism of action. The NQO1 inhibitor, dicoumarol, rescued the cytotoxicity of XD2-149 but not ZFP91 degradation, suggesting that the NQO1-induced cell death is independent of ZFP91. ZFP91 plays a role in tumorigenesis and is involved in multiple oncogenic pathways including NF-κB and HIF-1α.