-
Bjerg Hove posted an update 2 weeks ago
Purpose In the present study, the poly (ε-caprolactone)/cellulose nanofiber containing ZrO2 nanoparticles (PCL/CNF/ZrO2 ) nanocomposite was synthesized for wound dressing bandage with antimicrobial activity. Methods PCL/CNF/ZrO2 nanocomposite was synthesized in three different zirconium dioxide amount (0.5, 1, 2%). Also the prepared nanocomposites were characterized by Infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). In addition, the morphology of the samples was observed by scanning electron microscopy (SEM). read more Results Analysis of the XRD spectra showed a preserved structure for PCL semi-crystalline in nanocomposites and an increase in the concentrations of ZrO2 nanoparticles, the structure of nanocomposite was amorphous as well. The results of TGA, DTA, DSC showed thermal stability and strength properties for the nanocomposites which were more thermal stable and thermal integrate compared to PCL. The contact angles of the nanocomposites narrowed as the amount of ZrO2 in the structure increased. The evaluation of biological activities showed that the PCL/CNF/ZrO2 nanocomposite with various concentrations of ZrO2 nanoparticles exhibited moderate to good antimicrobial activity against all tested bacterial and fungal strains. Furthermore, cytocompatibility of the scaffolds was assessed by MTT assay and cell viability studies proved the non-toxic nature of the nanocomposites. Conclusion The results show that the biodegradability of nanocomposite has advantages that can be used as wound dressing.The exploitation of naturally obtained resources like biopolymers, plant-based extracts, microorganisms etc., offers numerous advantages of environment-friendliness and biocompatibility for various medicinal and pharmaceutical applications, whereas hazardous chemicals are not utilized for production protocol. Plant extracts based synthetic procedures have drawn consideration over conventional methods like physical and chemical procedures to synthesize nanomaterials. Greener synthesis of nanomaterials has become an area of interest because of numerous advantages such as non-hazardous, economical, and feasible methods with variety of applications in biomedicine, nanotechnology and nano-optoelectronics, etc.Purpose Non-alcoholic fatty liver disease (NAFLD) and steatohepatitis are two forms of fatty liver disease with benign and malignant nature, respectively. These two conditions can cause an increased risk of liver cirrhosis and hepatocellular carcinoma. Given the importance and high prevalence of NAFLD, it is necessary to investigate the results of different studies in related scope to provide a clarity guarantee of effectiveness. Therefore, this systematic review and meta-analysis aim to study the efficacy of various medications used in the treatment of NAFLD. Methods A systematic search of medical databases identified 1963 articles. After exclusion of duplicated articles and those which did not meet our inclusion criteria, eta-analysis was performed on 84 articles. Serum levels of alanine aminotransferase (ALT), aspartate amino transferase (AST) were set as primary outcomes and body mass index (BMI), hepatic steatosis, and NAFLD activity score (NAS) were determined as secondary outcomes. Results Based on the P-score of the therapeutic effects on the non-alcoholic steatohepatitis (NASH), we observed the highest efficacy for atorvastatin, tryptophan, orlistat, omega-3 and obeticholic acid for reduction of ALT, AST, BMI, steatosis and NAS respectively. Conclusion This meta-analysis showed that atorvastatin. life-style modification, weight loss, and BMI reduction had a remarkable effect on NAFLD-patients by decreasing aminotransferases.In the treatment of cancer, chemotherapy plays an important role though the efficacy of anti-cancer drug administered orally is limited, due to their poor solubility in physiological medium, inability to cross biological membrane, high Para-glycoprotein (P-gp) mediated drug efflux, and pre-systemic metabolism. These all factors cumulatively reduce drug exposure at the target site leading to multidrug resistance (MDR). Lipid based carriers systems has been explored to overcome solubility and permeability related issues of anti-cancer drugs. The lipid based formulations have also been reported to circumvent the effect of P-gp and CYP3A4. Further long chain triglycerides (LCT) has shown their ability to access Lymphatic route over Medium Chain Triglycerides, as the former has been extensively used for targeting anti-cancer drugs at proliferating cells through lymphatic route. Therefore this review tries to reflect the usefulness of lipid based drug carriers systems (viz. liposome, solid lipid nanoparticle, nano-lipid carriers, self-emulsifying, lipidic pro-drugs) in targeting lymphatic system and overcoming issues related to solubility and permeability of anti-cancer drugs. Moreover, we have also tried to reflect how critically lipid based carriers are important in maximizing therapeutic safety and efficacy of anti-cancer drugs.The overuse of antibiotics is the main reason for the expansion of multidrug-resistant microorganisms, especially, pathogenic fungi, such as Candida albicans and others. Nanotechnology provides an excellent therapeutic tool for pathogenic fungi. Several reports focused on metal oxide nanoparticles, especially, iron oxide nanoparticles due to their extensive applications such as targeted drug delivery. Using biological entities for iron oxide nanoparticle synthesis attracted many concerns for being eco-friendly, and inexpensive. The fusion of biologically active substances reduced and stabilized nanoparticles. Recently, the advancement and challenges for surface engineered magnetic nanoparticles are reviewed for improving their properties and compatibility. Other metals on the surface nanoparticles can enhance their biological and antimicrobial activities against pathogenic fungi. Furthermore, conjugation of antifungal drugs to magnetic nanoparticulate increases their antifungal effect, antibiofilm properties, and reduces their undesirable effects. In this review, we discuss different routes for the synthesis of iron oxide nanoparticles, surface coating manipulation, their applications as antimicrobials, and their mode of action.