Activity

  • Hertz Klemmensen posted an update 4 days, 15 hours ago

    We found that LPA2 gene deletion increased microglial activation but did not contribute to motoneuron death, astrogliosis, degeneration, and demyelination of motor axons. However, we observed that Lpar2 deficiency protected against muscle atrophy. Moreover, we also found the deletion of Lpar2 reduced the invasion of macrophages into the skeletal muscle of SOD1G93A mice, linking LPA2 signaling with muscle inflammation and atrophy in ALS. Overall, these results suggest for the first time that LPA2 contributes to ALS, and its genetic deletion results in protective actions at the early stages of the disease but shortens survival thereafter.Numerous studies indicate that deficits in the proper integration or migration of specific GABAergic precursor cells from the subpallium to the cortex can lead to severe cognitive dysfunctions and neurodevelopmental pathogenesis linked to intellectual disabilities. A different set of GABAergic precursors cells that express Pax2 migrate to hindbrain regions, targeting, for example auditory or somatosensory brainstem regions. We demonstrate that the absence of BDNF in Pax2-lineage descendants of Bdnf Pax2 KOs causes severe cognitive disabilities. In Bdnf Pax2 KOs, a normal number of parvalbumin-positive interneurons (PV-INs) was found in the auditory cortex (AC) and hippocampal regions, which went hand in hand with reduced PV-labeling in neuropil domains and elevated activity-regulated cytoskeleton-associated protein (Arc/Arg3.1; here Arc) levels in pyramidal neurons in these same regions. This immaturity in the inhibitory/excitatory balance of the AC and hippocampus was accompanied by elevated LTP, reduced (sound-induced) LTP/LTD adjustment, impaired learning, elevated anxiety, and deficits in social behavior, overall representing an autistic-like phenotype. Reduced tonic inhibitory strength and elevated spontaneous firing rates in dorsal cochlear nucleus (DCN) brainstem neurons in otherwise nearly normal hearing Bdnf Pax2 KOs suggests that diminished fine-grained auditory-specific brainstem activity has hampered activity-driven integration of inhibitory networks of the AC in functional (hippocampal) circuits. This leads to an inability to scale hippocampal post-synapses during LTP/LTD plasticity. BDNF in Pax2-lineage descendants in lower brain regions should thus be considered as a novel candidate for contributing to the development of brain disorders, including autism.Background The brain magnetic resonance imaging (MRI) image segmentation method mainly refers to the division of brain tissue, which can be divided into tissue parts such as white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The segmentation results can provide a basis for medical image registration, 3D reconstruction, and visualization. Generally, MRI images have defects such as partial volume effects, uneven grayscale, and noise. Therefore, in practical applications, the segmentation of brain MRI images has difficulty obtaining high accuracy. Materials and Methods The fuzzy clustering algorithm establishes the expression of the uncertainty of the sample category and can describe the ambiguity brought by the partial volume effect to the brain MRI image, so it is very suitable for brain MRI image segmentation (B-MRI-IS). The classic fuzzy c-means (FCM) algorithm is extremely sensitive to noise and offset fields. If the algorithm is used directly to segment the brain MRI image, the ideal segmentation result cannot be obtained. Accordingly, considering the defects of MRI medical images, this study uses an improved multiview FCM clustering algorithm (IMV-FCM) to improve the algorithm’s segmentation accuracy of brain images. IMV-FCM uses a view weight adaptive learning mechanism so that each view obtains the optimal weight according to its cluster contribution. The final division result is obtained through the view ensemble method. Under the view weight adaptive learning mechanism, the coordination between various views is more flexible, and each view can be adaptively learned to achieve better clustering effects. Results The segmentation results of a large number of brain MRI images show that IMV-FCM has better segmentation performance and can accurately segment brain tissue. Compared with several related clustering algorithms, the IMV-FCM algorithm has better adaptability and better clustering performance.Brain computer interaction (BCI) based on EEG can help patients with limb dyskinesia to carry out daily life and rehabilitation training. However, due to the low signal-to-noise ratio and large individual differences, EEG feature extraction and classification have the problems of low accuracy and efficiency. To solve this problem, this paper proposes a recognition method of motor imagery EEG signal based on deep convolution network. see more This method firstly aims at the problem of low quality of EEG signal characteristic data, and uses short-time Fourier transform (STFT) and continuous Morlet wavelet transform (CMWT) to preprocess the collected experimental data sets based on time series characteristics. So as to obtain EEG signals that are distinct and have time-frequency characteristics. And based on the improved CNN network model to efficiently recognize EEG signals, to achieve high-quality EEG feature extraction and classification. Further improve the quality of EEG signal feature acquisition, and ensure the high accuracy and precision of EEG signal recognition. Finally, the proposed method is validated based on the BCI competiton dataset and laboratory measured data. Experimental results show that the accuracy of this method for EEG signal recognition is 0.9324, the precision is 0.9653, and the AUC is 0.9464. It shows good practicality and applicability.Measurement of serum neurofilament light chain concentration (sNfL) promises to become a convenient, cost effective and meaningful adjunct for multiple sclerosis (MS) prognostication as well as monitoring disease activity in response to treatment. Despite the remarkable progress and an ever-increasing literature supporting the potential role of sNfL in MS over the last 5 years, a number of hurdles remain before this test can be integrated into routine clinical practice. In this review we highlight these hurdles, broadly classified by concerns relating to clinical validity and analytical validity. After setting out an aspirational roadmap as to how many of these issues can be overcome, we conclude by sharing our vision of the current and future role of sNfL assays in MS clinical practice.