Activity

  • McGinnis Moesgaard posted an update 1 week, 2 days ago

    Caseinophosphopeptides (CPPs) are a group of bioactive polypeptides hydrolyzed from caseins. Theaflavin-3,3′-digallate (TF-3) is a characteristic biofunctional polyphenol in black tea. In the present study, the interactions between CPPs and TF-3 were systematically investigated with fluorescence quenching, quartz crystal microbalance with dissipation monitoring (QCM-D), circular dichroism (CD), and small-angle X-ray scattering (SAXS). Both fluorescence quenching and QCM-D studies demonstrated that TF-3 interacted with CPPs primarily through hydrogen bonding. Other forces were also involved. The addition of TF-3 did not change the secondary structures and the radius of gyration of CPPs, but it induced the aggregation of CPPs. The size of the aggregates increased with the concentration of TF-3. The impact of the association between TF-3 and CPPs on the antioxidant activity of TF-3 was studied by the cellular antioxidant activity (CAA) assay, which revealed that the cellular antioxidant activity of TF-3 was enhanced after binding to CPPs.Novel methods for introducing chemical and biological functionality to the surface of gold nanoparticles serve to increase the utility of this class of nanomaterials across a range of applications. To date, methods for functionalising gold surfaces have relied upon uncontrollable non-specific adsorption, bespoke chemical linkers, or non-generalisable protein-protein interactions. Herein we report a versatile method for introducing functionality to gold nanoparticles by exploiting the strong interaction between chemically functionalised bovine serum albumin (f-BSA) and citrate-capped gold nanoparticles (AuNPs). We establish the generalisability of the method by introducing a variety of functionalities to gold nanoparticles using cheap, commercially available chemical linkers. The utility of this approach is further demonstrated through the conjugation of the monoclonal antibody Ontruzant to f-BSA-AuNPs using inverse electron-demand Diels-Alder (iEDDA) click chemistry, a hitherto unexplored chemistry for AuNP-IgG conjugation. Finally, we show that the AuNP-Ontruzant particles generated via f-BSA-AuNPs have a greater affinity for their target in a lateral flow format when compared to conventional physisorption, highlighting the potential of this technology for producing sensitive diagnostic tests.Implementation of magnetic nanoparticles in biomedicine requires their passivation, which often comes at a cost of diminished magnetic properties. For the design of nano-agents with targeted magnetic behaviour, it is important to distinguish between ligands which can improve desired performance, and those that reduce it. Carboxylic acid-, thiol-, and amine-protected cobalt nanoparticles were studied by density functional theory calculations to model the impact of ligand coverage on the magnetic properties. The simulations show that the functional group, arrangement, and coverage density of the ligand coating control both the total magnetic moment and magnetic anisotropy energy of the nanoparticle, as well as the distribution of local spin magnetic moments across the metallic core. Captured effects of ligand binding on the orbital moments of cobalt atoms were insignificant. Selleckchem Baf-A1 Out of the three ligand families, only carboxylic acid coatings increased the magnetic moments of cobalt nanoparticles, while amines and thiols quenched them. Calculated anisotropy energies of protected nanoparticles consistently increased with the growing ligand density, reaching the highest values for a 100% coverage of both carboxylic acid and thiol coatings. However, the binding nature of the two functional groups showed opposite impacts on the d-states of interacting cobalt atoms. This study has thus established important principles for the design of biocompatible magnetic nanocomposites, highlighting different routes to achieve desired magnetic behaviour.Intercalating ds-DNA/RNA with small molecules can play an essential role in controlling the electron transmission probability for molecular electronics applications such as biosensors, single-molecule transistors, and data storage. However, its applications are limited due to a lack of understanding of the nature of intercalation and electron transport mechanisms. We addressed this long-standing problem by studying the effect of intercalation on both the molecular structure and charge transport along the nucleic acids using molecular dynamics simulations and first-principles calculations coupled with the Green’s function method, respectively. The study on anthraquinone and anthraquinone-neomycin conjugate intercalation into short nucleic acids reveals some universal features (1) the intercalation affects the transmission by two mechanisms (a) inducing energy levels within the bandgap and (b) shifting the location of the Fermi energy with respect to the molecular orbitals of the nucleic acid, (2) the effect of intercalation was found to be dependent on the redox state of the intercalator while oxidized anthraquinone decreases, reduced anthraquinone increases the conductance, and (3) the sequence of the intercalated nucleic acid further affects the transmission lowering the AT-region length was found to enhance the electronic coupling of the intercalator with GC bases, hence yielding an increase of more than four times in conductance. We anticipate our study to inspire designing intercalator-nucleic acid complexes for potential use in molecular electronics via creating a multi-level gating effect.Up to the end of 2020Every year, the appearance of marine biotoxins causes enormous socio-economic damage worldwide. Among the major groups of biotoxins, paralytic shellfish toxins, comprising saxitoxin and its analogues (STXs), are the ones that cause the most severe effects on humans, including death. However, the knowledge that currently exists on their chemistry, properties and mode of toxicological action is disperse and partially outdated. This review intends to systematically compile the dispersed information, updating and complementing it. With this purpose, it addresses several aspects related to the molecular structure of these toxins. Special focus is given to the bioconversion reactions that may occur in the different organisms (dinoflagellates, bivalves, and humans) and the possible mediators involved. A critical review of the most recently discovered analogues, the M-series toxins, is presented. Finally, a deep discussion about the relationship between the molecular structure (e.g., effect of the substituting groups and the net charge of the molecules) and the toxic activity of these molecules is performed, proposing the concept of “toxicological traffic light” based on the toxicity equivalency factors (TEFs).The discovery of ferroelectricity in polycrystalline thin films of doped HfO2 has reignited the expectations of developing competitive ferroelectric non-volatile memory devices. To date, it is widely accepted that the performance of HfO2-based ferroelectric devices during their life cycle is critically dependent on the presence of point defects as well as structural phase polymorphism, which mainly originates from defects either. The purpose of this review article is to overview the impact of defects in ferroelectric HfO2 on its functional properties and the resulting performance of memory devices. Starting from the brief summary of defects in classical perovskite ferroelectrics, we then introduce the known types of point defects in dielectric HfO2 thin films. Further, we discuss main analytical techniques used to characterize the concentration and distribution of defects in doped ferroelectric HfO2 thin films as well as at their interfaces with electrodes. The main part of the review is devoted to the recent experimental studies reporting the impact of defects in ferroelectric HfO2 structures on the performance of different memory devices. We end up with the summary and perspectives of HfO2-based ferroelectric competitive non-volatile memory devices.In this article, the structural, electronic and thermal transport characteristics of bilayer tetragonal graphene (TG) are systematically explored with a combination of first-principles calculations and machine-learning interatomic potential approaches. link2 Optimized ground state geometry of the bilayer TG structure is predicted and examined by employing various stability criteria. Electronic bandstructure analysis confirmed that bilayer TG exhibits a metallic band structure similar to the monolayer T-graphene structure. Thermal transport characteristics of the bilayer TG structure are explored by analysing thermal conductivity, the Seebeck coefficient, and electrical conductivity. The electronic part of the thermal conductivity shows linearly increasing behaviour with temperature, however the lattice part exhibits the opposite character. The lattice thermal conductivity part is investigated in terms of the three phonon scattering rates and weighted phase space. link3 On the other hand, the Seebeck coefficient goes through a transition from negative to positive values with increasing temperature. The Wiedemann-Franz law regarding electrical transport of the bilayer TG is verified and confirms the universal Lorentz number. Specific heat of the bilayer TG structure follows the Debye model at low temperature and constant behaviour at high temperature. Moreover, the Debye temperature of the bilayer TG structure is verified by ab initio calculations as well as fitting the specific heat data using the Debye model.Understanding the molecular rules behind the dynamics of supramolecular assemblies is fundamentally important for the rational design of responsive assemblies with tunable properties. Herein, we report that the dynamics of temperature-sensitive supramolecular assemblies is not only affected by the dehydration of oligoethylene glycol (OEG) motifs, but also by the thermally-promoted molecular motions. These counteracting features set up a dynamics transition point (DTP) that can be modulated with subtle variations in a small hydrophobic patch on the hydrophilic face of the amphiphilic assembly. Understanding the structural factors that control the dynamics of the assemblies leads to rational design of enzyme-responsive assemblies with tunable temperature responsive profiles.Mesocrystals with highly ordered subunits can provide good charge transfer tunnels and more active sites for catalytic reactions. So far, single-component mesocrystals have been well-developed in metals or metal oxides in the past decades, but the construction of mesocrystals in nanocomposites has been a great challenge. Herein we demonstrated a simple, one-pot wet chemical strategy for the preparation of plate-like Ag-Cu2O composited mesocrystals (CMCs) without any organic capping agent, which broke through the traditional dependence on organic capping agents for the synthesis of mesocrystals. As expected, these unprecedented Ag-Cu2O CMCs displayed superior visible-light-driven photodegradation performance toward tetracycline solution compared to the core-shell Ag@Cu2O and pure Cu2O photocatalysts. The improved photocatalytic activity of Ag-Cu2O CMCs could be ascribed to the synergistic effect of an ordered crystallographic orientation, the Schottky barrier and localized surface plasmon resonance (LSPR) for simultaneously enhancing charge separation and transfer as well as visible light harvesting.