Activity

  • Strange Reeves posted an update 8 hours, 30 minutes ago

    Down syndrome is one of the most common genetic disorders. The distinctive facial features of Down syndrome provide an opportunity for automatic identification. Recent studies showed that facial recognition technologies have the capability to identify genetic disorders. However, there is a paucity of studies on the automatic identification of Down syndrome with facial recognition technologies, especially using deep convolutional neural networks. Here, we developed a Down syndrome identification method utilizing facial images and deep convolutional neural networks, which quantified the binary classification problem of distinguishing subjects with Down syndrome from healthy subjects based on unconstrained two-dimensional images. The network was trained in two main steps First, we formed a general facial recognition network using a large-scale face identity database (10,562 subjects) and then trained (70%) and tested (30%) a dataset of 148 Down syndrome and 257 healthy images curated through public databases. In the final testing, the deep convolutional neural network achieved 95.87% accuracy, 93.18% recall, and 97.40% specificity in Down syndrome identification. Our findings indicate that the deep convolutional neural network has the potential to support the fast, accurate, and fully automatic identification of Down syndrome and could add considerable value to the future of precision medicine.The beer production chain includes some crucial steps regarding processing, delivery, service, and consumption that can benefit from the implementation of IoT (Internet of Things) based technologies. Large breweries implemented the use of sensors and digitization before smaller ones among which are craft breweries. selleck compound Internet of Beer (IoB) technologies are becoming accessible to mid and small sized brewing companies. Therefore, the objective of this work is to review mainly low-cost IoB smart technologies that can be implemented from the mash to the final product and its service, to improve the brewing production, control, delivery, and final quality increasing profitability. The reviewed applications were retrieved both from the scientific databases and from the web. The work is structured in three macro areas such as beer processing, product logistics and traceability, and service. The results show a future trend characterized by a very fast increase in the use of IoB (also open source) systems to drive efficiency, productivity, quality, and safety. This will be done by real-time monitoring and a data-driven decision support system (DSS). Crucial aspects needing further investigation are data ownership and data standardization. The access price of IoB devices and software is destined for a significant decrease while their diversification on the market will grow leading to a massive future implementation within all the production levels.The essential trace metals iron, zinc, and copper have a significant physiological role in healthy brain development and function. Especially zinc is important for neurogenesis, synaptogenesis, synaptic transmission and plasticity, and neurite outgrowth. Given the key role of trace metals in many cellular processes, it is important to maintain adequate levels in the brain. However, the physiological concentration of trace metals, and in particular zinc, in the human and animal brain is not well described so far. For example, little is known about the trace metal content of the brain of animals outside the class of mammals. Here, we report the concentration of iron, zinc, and copper in fresh brain tissue of different model-species of the phyla Chordata (vertebrates (mammals, fish)), Annelida, Arthropoda (insects), and Mollusca (snails), using inductively coupled plasma mass-spectrometry (ICP-MS). Our results show that the trace metals are present in the nervous system of all species and that significant differences can be detected between species of different phyla. We further show that a region-specific distribution of metals within the nervous system already exists in earthworms, hinting at a tightly controlled metal distribution. In line with this, the trace metal content of the brain of different species does not simply correlate with brain size. We conclude that although the functional consequences of the controlled metal homeostasis within the brain of many species remains elusive, trace metal biology may not only play an important role in the nervous system of mammals but across the whole animal kingdom.This study presents a chemotaxonomic investigation of the genus Bostrychia through the quantitation of the major mycosporine-like amino acids (MAAs). The presence of some cryptic species had been suggested in the B. moritziana/B. radicans complex and MAA-profiling in respective samples revealed different chemotypes within this species complex. Another possibly polyphyletic species is Bostrychia simpliciuscula; previous molecular phylogenetic analyses showed four genetic lineages within this species, one of which was recently distinguished as a new species. Phytochemical profiling of those samples used for DNA analyses revealed four different chemotypes, corresponding to the above four lineages and it supports the re-circumscription of the other three B. simpliciuscula lineages. Therefore, mycosporine-like amino acids are considered as suitable chemotaxonomic markers for the reassessment of the classification of B. simpliciuscula. The determination of the MAA patterns in these algae was possible after developing and validating a suitable high-performance liquid chromatography-diode array detector (HPLC-DAD) method.Osteoblasts derived from mouse skulls have increased osteoclastogenic potential compared to long bone osteoblasts when stimulated with 1,25(OH)2 vitamin D3 (vitD3). This indicates that bone cells from specific sites can react differently to biochemical signals, e.g., during inflammation or as emitted by bioactive bone tissue-engineering constructs. Given the high turn-over of alveolar bone, we hypothesized that human alveolar bone-derived osteoblasts have an increased osteogenic and osteoclastogenic potential compared to the osteoblasts derived from long bone. The osteogenic and osteoclastogenic capacity of alveolar bone cells and long bone cells were assessed in the presence and absence of osteotropic agent vitD3. Both cell types were studied in osteogenesis experiments, using an osteogenic medium, and in osteoclastogenesis experiments by co-culturing osteoblasts with peripheral blood mononuclear cells (PBMCs). Both osteogenic and osteoclastic markers were measured. At day 0, long bones seem to have a more late-osteoblastic/preosteocyte-like phenotype compared to the alveolar bone cells as shown by slower proliferation, the higher expression of the matrix molecule Osteopontin (OPN) and the osteocyte-enriched cytoskeletal component Actin alpha 1 (ACTA1).