Activity

  • Hull Dohn posted an update 1 week, 2 days ago

    RHS elements are components of conserved toxin-delivery systems, wide-spread within the bacterial kingdom and some of the most positively selected genes known. However, very little is known about how Rhs toxins affect bacterial biology. Salmonella Typhimurium contains a full-length rhs gene and an adjacent orphan rhs gene, which lacks the conserved delivery part of the Rhs protein. Here we show that, in addition to the conventional delivery, Rhs toxin-antitoxin pairs encode for functional type-II toxin-antitoxin (TA) loci that regulate S. Typhimurium proliferation within macrophages. Mutant S. Typhimurium cells lacking both Rhs toxins proliferate 2-times better within macrophages, mainly because of an increased growth rate. Thus, in addition to providing strong positive selection for the rhs loci under conditions when there is little or no toxin delivery, internal expression of the toxin-antitoxin system regulates growth in the stressful environment found inside macrophages.The 1.6 Mbp deletion on chromosome 3q29 is associated with a range of neurodevelopmental disorders, including schizophrenia, autism, microcephaly, and intellectual disability. Despite its importance towards neurodevelopment, the role of individual genes, genetic interactions, and disrupted biological mechanisms underlying the deletion have not been thoroughly characterized. Here, we used quantitative methods to assay Drosophila melanogaster and Xenopus laevis models with tissue-specific individual and pairwise knockdown of 14 homologs of genes within the 3q29 region. We identified developmental, cellular, and neuronal phenotypes for multiple homologs of 3q29 genes, potentially due to altered apoptosis and cell cycle mechanisms during development. Using the fly eye, we screened for 314 pairwise knockdowns of homologs of 3q29 genes and identified 44 interactions between pairs of homologs and 34 interactions with other neurodevelopmental genes. Interestingly, NCBP2 homologs in Drosophila (Cbp20) and X. laevis (ncbp2) enhanced the phenotypes of homologs of the other 3q29 genes, leading to significant increases in apoptosis that disrupted cellular organization and brain morphology. Gambogic These cellular and neuronal defects were rescued with overexpression of the apoptosis inhibitors Diap1 and xiap in both models, suggesting that apoptosis is one of several potential biological mechanisms disrupted by the deletion. NCBP2 was also highly connected to other 3q29 genes in a human brain-specific interaction network, providing support for the relevance of our results towards the human deletion. Overall, our study suggests that NCBP2-mediated genetic interactions within the 3q29 region disrupt apoptosis and cell cycle mechanisms during development.Following a stimulus, the neural response typically strongly varies in time and across neurons before settling to a steady-state. While classical population coding theory disregards the temporal dimension, recent works have argued that trajectories of transient activity can be particularly informative about stimulus identity and may form the basis of computations through dynamics. Yet the dynamical mechanisms needed to generate a population code based on transient trajectories have not been fully elucidated. Here we examine transient coding in a broad class of high-dimensional linear networks of recurrently connected units. We start by reviewing a well-known result that leads to a distinction between two classes of networks networks in which all inputs lead to weak, decaying transients, and networks in which specific inputs elicit amplified transient responses and are mapped onto output states during the dynamics. Theses two classes are simply distinguished based on the spectrum of the symmetric part of the connectivity matrix. For the second class of networks, which is a sub-class of non-normal networks, we provide a procedure to identify transiently amplified inputs and the corresponding readouts. We first apply these results to standard randomly-connected and two-population networks. We then build minimal, low-rank networks that robustly implement trajectories mapping a specific input onto a specific orthogonal output state. Finally, we demonstrate that the capacity of the obtained networks increases proportionally with their size.BACKGROUND Ascaris lumbricoides is one of the three major soil-transmitted gastrointestinal helminths (STHs) that infect more than 440 million people in the world, ranking this neglected tropical disease among the most common afflictions of people living in poverty. Children infected with this roundworm suffer from malnutrition, growth stunting as well as cognitive and intellectual deficits. An effective vaccine is urgently needed to complement anthelmintic deworming as a better approach to control helminth infections. As37 is an immunodominant antigen of Ascaris suum, a pig roundworm closely related to the human A. lumbricoides parasite, recognized by protective immune sera from A. suum infected mice. In this study, the immunogenicity and vaccine efficacy of recombinant As37 were evaluated in a mouse model. METHODOLOGY/PRINCIPAL FINDINGS As37 was cloned and expressed as a soluble recombinant protein (rAs37) in Escherichia coli. The expressed rAs37 was highly recognized by protective immune sera from A. suum -helminth vaccine antigen to prevent all STH infections without cross-reaction with human IgSF molecules. CONCLUSIONS/SIGNIFICANCE As37 is an A. suum expressed immunodominant antigen that elicited significant protective immunity in mice when formulated with AddaVax™. As37 is highly conserved in other STHs, but not in humans, suggesting it could be further developed as a pan-helminth vaccine against STH co-infections.Proteins in cellular environments are highly susceptible. Local perturbations to any residue can be sensed by other spatially distal residues in the protein molecule, showing long-range correlations in the native dynamics of proteins. The long-range correlations of proteins contribute to many biological processes such as allostery, catalysis, and transportation. Revealing the structural origin of such long-range correlations is of great significance in understanding the design principle of biologically functional proteins. In this work, based on a large set of globular proteins determined by X-ray crystallography, by conducting normal mode analysis with the elastic network models, we demonstrate that such long-range correlations are encoded in the native topology of the proteins. To understand how native topology defines the structure and the dynamics of the proteins, we conduct scaling analysis on the size dependence of the slowest vibration mode, average path length, and modularity. Our results quantitatively describe how native proteins balance between order and disorder, showing both dense packing and fractal topology.