Activity

  • Lindgren Mark posted an update 1 week ago

    Background Patients with type 2 diabetes mellitus (T2DM) are prone to ocular surface infections. We therefore characterized the conjunctival microbiome of T2DM patients and the influence of topical levofloxacin to investigate whether a dysbiosis is associated with this phenomenon. Methods Conjunctival microbiome of 79 T2DM patients and 113 non-diabetic controls was profiled using the 16S rDNA sequencing approach. Furthermore, 21 T2DM and 14 non-diabetic patients who underwent cataract surgeries were followed up perioperatively and the influence of pre- and post-operative levofloxacin on the conjunctival microbiome was further investigated prospectively and compared longitudinally. Results The α-diversity of the conjunctival microbiota was significantly higher in T2DM patients than in controls (P less then 0.05). Significant differences in both composition and function of the conjunctival microbiome were identified on the ocular surface of T2DM patients as compared to non-diabetic controls. Particularly, phylum Bacteroidetes and Fusobacteria, genus Pseudomonas, Haemophilus, and Empedobacter were enriched, while genus Streptococcus was reduced on the T2DM ocular surface. Microbial genes functioning of bacterial chemotaxis was elevated in the conjunctival microbiome of T2DM patients. Furthermore, compared to the initial status, several genera including Staphylococcus were more abundant in the conjunctival microbiome of T2DM patients after 3-days use of preoperative levofloxacin topically, while no genus was more abundant in the non-diabetic follow-up group. No difference was observed between initial status and 7 days after ceasing all postoperative medications in both diabetic and non-diabetic follow-up groups. Conclusions The conjunctival microbiome of T2DM patients was more complex and may respond differently to topical antibiotics.Mutations in the ATP4A proton pump prevent gastric acidification and explain the chronic autoimmune gastritis scenario that conducts the gastric neuroendocrine tumor (gNET) formation. Here, we wanted to investigate the co-occurrence cytomegalovirus (CMV) infection and intestinal inflammation that presented all members of a family affected with gNET and carrying an ATP4A mutation. Intestinal inflammation persisted after CMV eradication and anemia treatment. The inflammation was compatible with a ileitis/Crohn’s disease and was originated by the same autoimmune mechanism described in the tumorigenesis of gNETS. The same secondary disease but no the CMV infection was observed in all members affected with gNET and carrying the ATP4A mutation. Our results suggest that the ATP4A malfunction not only explained gNETs but also the co-occurring disease and opportunistic infections, which allowed to link autoimmune pathologies and gNETs in a unique mechanism. Our results open a new window to better understand not only gastric neoplasms formation but the co-occurring autoimmune disorders and the inflammatory mechanism that compose a premalignant scenario for other tumor formation. Our findings are important since contribute to describe the genetic landscape of the Inflammatory Bowel/Crohn’s disease and alert clinicians to monitor patients with gastric neoplasms mediated by achlorhydria mechanisms for concomitant secondary pathologies.Stem cell therapy using human skin-derived neural precursors holds much promise for the treatment of stroke patients. Two main mechanisms have been proposed to give rise to the improved recovery in animal models of stroke after transplantation of these cells. First, the so called by-stander effect, which could modulate the environment during early phases after brain tissue damage, resulting in moderate improvements in the outcome of the insult. Second, the neuronal replacement and functional integration of grafted cells into the impaired brain circuitry, which will result in optimum long-term structural and functional repair. Recently developed sophisticated research tools like optogenetic control of neuronal activity and rabies virus monosynaptic tracing, among others, have made it possible to provide solid evidence about the functional integration of grafted cells and its contribution to improved recovery in animal models of brain damage. Moreover, previous clinical trials in patients with Parkinson’s Disease represent a proof of principle that stem cell-based neuronal replacement could work in humans. Our studies with in vivo and ex vivo transplantation of human skin-derived cells neurons in animal model of stroke and organotypic cultures of adult human cortex, respectively, also support the hypothesis that human somatic cells reprogrammed into neurons can get integrated in the human lesioned neuronal circuitry. In the present short review, we summarized our data and recent studies from other groups supporting the above hypothesis and opening new avenues for development of the future clinical applications.Oligodendrocytes (OLs) produce myelin to insulate axons. This accelerates action potential propagation, allowing nerve impulse information to synchronize within complex neuronal ensembles and promoting brain connectivity. Brain plasticity includes myelination, a process that starts early after birth and continues throughout life. Myelin repair, followed by injury or disease, requires new OLs differentiated from a population derived from oligodendrocyte precursor cells (OPCs) that continue to proliferate, migrate and differentiate to preserve and remodel myelin in the adult central nervous system. OPCs represent the largest proliferative neural cell population outside the adult neurogenic niches in the brain. OPCs receive synaptic inputs from glutamatergic and GABAergic neurons throughout neurodevelopment, a unique feature among glial cells. Neuron-glia communication through GABA signaling in OPCs has been shown to play a role in myelin plasticity and repair. In this review we will focus on the molecular and functional properties of GABA A receptors (GABA A Rs) expressed by OPCs and their potential role in remyelination.Traumatic optic neuropathy (TON) refers to optic nerve damage caused by trauma, leading to partial or complete loss of vision. The primary treatment options, such as hormonal therapy and surgery, have limited efficacy. Pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), a functional endogenous neuroprotective peptide, has emerged as a promising therapeutic agent. In this study, we used rat retinal ganglion cell (RGC) exosomes as nanosized vesicles for the delivery of PACAP38 loaded via the exosomal anchor peptide CP05 (EXO PACAP38 ). EXO PACAP38 showed greater uptake efficiency in vitro and in vivo than PACAP38. this website The results showed that EXO PACAP38 significantly enhanced the RGC survival rate and retinal nerve fiber layer thickness in a rat TON model. Moreover, EXO PACAP38 significantly promoted axon regeneration and optic nerve function after injury. These findings indicate that EXO PACAP38 can be used as a treatment option and may have therapeutic implications for patients with TON.