Activity

  • Jamison Snyder posted an update 1 week, 4 days ago

    This prediction is found to be consistent with observations on diverse fragile molecular liquids under isobaric and isochoric conditions and provides a different conceptual view of the global relaxation map. As a corollary, a theoretical basis is established for the structural relaxation time scale growing exponentially with inverse temperature to a high power, consistent with experiments in the deeply supercooled regime. A criterion for the irrelevance of collective elasticity effects is deduced and shown to be consistent with viscous flow in low-fragility inorganic network-forming melts. Finally, implications for relaxation in the equilibrated deep glass state are briefly considered.The low-density lipoprotein receptor (LDLR) is key to cellular cholesterol uptake and is also the main receptor for the vesicular stomatitis virus glycoprotein (VSV G). Here we show that in songbirds LDLR is highly divergent and lacks domains critical for ligand binding and cellular trafficking, inconsistent with universal structure conservation and function across vertebrates. Linked to the LDLR functional domain loss, zebra finches show inefficient infectivity by lentiviruses (LVs) pseudotyped with VSV G, which can be rescued by the expression of human LDLR. Finches also show an atypical plasma lipid distribution that relies largely on high-density lipoprotein (HDL). These findings provide insights into the genetics and evolution of viral infectivity and cholesterol transport mechanisms in vertebrates.Cyclic actuation is critical for driving motion and transport in living systems, ranging from oscillatory motion of bacterial flagella to the rhythmic gait of terrestrial animals. These processes often rely on dynamic and responsive networks of oscillators-a regulatory control system that is challenging to replicate in synthetic active matter. Here, we describe a versatile platform of light-driven active particles with interaction geometries that can be reconfigured on demand, enabling the construction of oscillator and spinner networks. We employ optically induced Marangoni trapping of particles confined to an air-water interface and subjected to patterned illumination. Thermal interactions among multiple particles give rise to complex coupled oscillatory and rotational motions, thus opening frontiers in the design of reconfigurable, multiparticle networks exhibiting collective behavior.Infection with obligatory intracellular bacteria is difficult to treat, as intracellular targets and delivery methods of therapeutics are not well known. Ehrlichia translocated factor-1 (Etf-1), a type IV secretion system (T4SS) effector, is a primary virulence factor for an obligatory intracellular bacterium, Ehrlichia chaffeensis In this study, we developed Etf-1-specific nanobodies (Nbs) by immunizing a llama to determine if intracellular Nbs block Etf-1 functions and Ehrlichia infection. Of 24 distinct anti-Etf-1 Nbs, NbD7 blocked mitochondrial localization of Etf-1-GFP in cotransfected cells. NbD7 and control Nb (NbD3) bound to different regions of Etf-1. Size-exclusion chromatography showed that the NbD7 and Etf-1 complex was more stable than the NbD3 and Etf-1 complex. Intracellular expression of NbD7 inhibited three activities of Etf-1 and E. chaffeensis up-regulation of mitochondrial manganese superoxide dismutase, reduction of intracellular reactive oxygen species, and inhibition of cellular apoptosis. Consequently, intracellular NbD7 inhibited Ehrlichia infection, whereas NbD3 did not. To safely and effectively deliver Nbs into the host cell cytoplasm, NbD7 was conjugated to cyclized cell-permeable peptide 12 (CPP12-NbD7). CPP12-NbD7 effectively entered mammalian cells and abrogated the blockade of cellular apoptosis caused by E. chaffeensis and inhibited infection by E. chaffeensis in cell culture and in a severe combined-immunodeficiency mouse model. Our results demonstrate the development of an Nb that interferes with T4SS effector functions and intracellular pathogen infection, along with an intracellular delivery method for this Nb. This strategy should overcome current barriers to advance mechanistic research and develop therapies complementary or alternative to the current broad-spectrum antibiotic.Sprouting angiogenesis is fundamental for development and contributes to cancer, diabetic retinopathy, and cardiovascular diseases. Sprouting angiogenesis depends on the invasive properties of endothelial tip cells. However, there is very limited knowledge on how tip cells invade into tissues. Here, we show that endothelial tip cells use dactylopodia as the main cellular protrusion for invasion into nonvascular extracellular matrix. We show that dactylopodia and filopodia protrusions are balanced by myosin IIA (NMIIA) and actin-related protein 2/3 (Arp2/3) activity. Endothelial cell-autonomous ablation of NMIIA promotes excessive dactylopodia formation in detriment of filopodia. Conversely, endothelial cell-autonomous ablation of Arp2/3 prevents dactylopodia development and leads to excessive filopodia formation. We further show that NMIIA inhibits Rac1-dependent activation of Arp2/3 by regulating the maturation state of focal adhesions. Our discoveries establish a comprehensive model of how endothelial tip cells regulate its protrusive activity and will pave the way toward strategies to block invasive tip cells during sprouting angiogenesis.Inorganic semiconductor-based microscale light-emitting diodes (micro-LEDs) have been widely considered the key solution to next-generation, ubiquitous lighting and display systems, with their efficiency, brightness, contrast, stability, and dynamic response superior to liquid crystal or organic-based counterparts. However, the reduction of micro-LED sizes leads to the deteriorated device performance and increased difficulties in manufacturing. Here, we report a tandem device scheme based on stacked red, green, and blue (RGB) micro-LEDs, for the realization of full-color lighting and displays. Thin-film micro-LEDs (size ∼100 μm, thickness ∼5 μm) based on III-V compound semiconductors are vertically assembled via epitaxial liftoff and transfer printing. A thin-film dielectric-based optical filter serves as a wavelength-selective interface for performance enhancement. Furthermore, we prototype arrays of tandem RGB micro-LEDs and demonstrate display capabilities. These materials and device strategies provide a viable path to advanced lighting and display systems.The nucleation of ice crystals in clouds is poorly understood, despite being of critical importance for our planet’s climate. Nucleation occurs largely at rare “active sites” present on airborne particles such as mineral dust, but the nucleation pathway is distinct under different meteorological conditions. These give rise to two key nucleation pathways where a particle is either immersed in a supercooled liquid water droplet (immersion freezing mode) or suspended in a supersaturated vapor (deposition mode). However, it is unclear if the same active sites are responsible for nucleation in these two modes. Here, we directly compare the sites that are active in these two modes by performing immersion freezing and deposition experiments on the same thin sections of two atmospherically important minerals (feldspar and quartz). For both substrates, we confirm that nucleation is dominated by a limited number of sites and show that there is little correlation between the two sets of sites operating in each experimental method across both materials, only six out of 73 sites active for immersion freezing nucleation were also active for deposition nucleation. Clearly, different properties determine the activity of nucleation sites for each mode, and we use the pore condensation and freezing concept to argue that effective deposition sites have size and/or geometry requirements not of relevance to effective immersion freezing sites. Hence, the ability to nucleate is pathway dependent, and the mode of nucleation has to be explicitly considered when applying experimental data in cloud models.Memories of the images that we have seen are thought to be reflected in the reduction of neural responses in high-level visual areas such as inferotemporal (IT) cortex, a phenomenon known as repetition suppression (RS). We challenged this hypothesis with a task that required rhesus monkeys to report whether images were novel or repeated while ignoring variations in contrast, a stimulus attribute that is also known to modulate the overall IT response. The monkeys’ behavior was largely contrast invariant, contrary to the predictions of an RS-inspired decoder, which could not distinguish responses to images that are repeated from those that are of lower contrast. However, the monkeys’ behavioral patterns were well predicted by a linearly decodable variant in which the total spike count was corrected for contrast modulation. These results suggest that the IT neural activity pattern that best aligns with single-exposure visual recognition memory behavior is not RS but rather sensory referenced suppression reductions in IT population response magnitude, corrected for sensory modulation.Precise spatiotemporal control of gene expression in the developing brain is critical for neural circuit formation, and comprehensive expression mapping in the developing primate brain is crucial to understand brain function in health and disease. Here, we developed an unbiased, automated, large-scale, cellular-resolution in situ hybridization (ISH)-based gene expression profiling system (GePS) and companion analysis to reveal gene expression patterns in the neonatal New World marmoset cortex, thalamus, and striatum that are distinct from those in mice. Gene-ontology analysis of marmoset-specific genes revealed associations with catalytic activity in the visual cortex and neuropsychiatric disorders in the thalamus. Cortically expressed genes with clear area boundaries were used in a three-dimensional cortical surface mapping algorithm to delineate higher-order cortical areas not evident in two-dimensional ISH data. GePS provides a powerful platform to elucidate the molecular mechanisms underlying primate neurobiology and developmental psychiatric and neurological disorders.Molecular events that drive the development of precancerous lesions in the bronchial epithelium, which are precursors of lung squamous cell carcinoma (LUSC), are poorly understood. We demonstrate that disruption of epithelial cellular polarity, via the conditional deletion of the apical determinant Crumbs3 (Crb3), initiates and sustains precancerous airway pathology. The loss of Crb3 in adult luminal airway epithelium promotes the uncontrolled activation of the transcriptional regulators YAP and TAZ, which stimulate intrinsic signals that promote epithelial cell plasticity and paracrine signals that induce basal-like cell growth. We show that aberrant polarity and YAP/TAZ-regulated gene expression associates with human bronchial precancer pathology and disease progression. Analyses of YAP/TAZ-regulated genes further identified the ERBB receptor ligand Neuregulin-1 (NRG1) as a key transcriptional target and therapeutic targeting of ERBB receptors as a means of preventing and treating precancerous cell growth. Y27632 Our observations offer important molecular insight into the etiology of LUSC and provides directions for potential interception strategies of lung cancer.