Activity

  • Hall Massey posted an update 1 day, 2 hours ago

    The mitophagy-related proteins PINK1, Parkin, and LC3 were regulated by IL-33 through the AMPK pathway. IL-33 significantly decreased M1-related cytokines CXCL-10 and TNF-α production and significantly increased M2-related cytokine CCL-22 production. In conclusion, IL-33 induces ROS production and subsequently influences mitophagy through AMPK activation, altering the macrophage-polarization phenotype of monocytes.Regular physical training and cigarette smoke exposure (CSE) have opposite effects on physical performance, antioxidant, and inflammatory profile. However, the interaction between these events is not well studied. We aimed to investigate how regular physical training and CSE interact, and in what is the outcome of this interaction on the physical performance, skeletal muscle antioxidant defense and molecular profile response of pro and anti-inflammatory cytokines. Male C57BL/6 mice were randomly divided into 4 groups (n = 8/group) 1) Sedentary group (SED); 2) 4 weeks of control, followed by 4 weeks of CSE (SED + CSEG); 3) Physically active (PA) along 8 weeks (forced swim training, 5 times a week); 4) Physically active and exposed to the cigarette smoke (PA + CSEG), group submitted to forced swim training for 4 weeks, followed by 4 weeks of concomitant training and CSE. Physical performance was evaluated before and after the experimental period (8 weeks), total peroxidase and glutathione peroxidase (GPx) activities, expression of genes encoding TNF-α, MCP-1, IL1β, IL-6, IL-10, TGF-β, HO-1 and the TNF-α/IL-10 ratio were determined from gastrocnemius muscle at the end of experimental period. The CSE attenuated the aerobic capacity adaptation (time to exhaustion in swimming forced test) promoted by physical training and inhibit the improvement in local muscle resistance (inverted screen test). The regular physical training enhanced the antioxidant defense, but the CSE abrogated this benefit. The CSE induced a harmful pro-inflammatory profile in skeletal muscle from sedentary animals whereas the regular physical training induced an opposite adaptation. Likewise, the CSE abolished the protective effect of physical training. Together, these results suggest a negative effect of CSE including, at least in part, the inhibition/attenuation of beneficial adaptations from regular physical training.Knowledge of heterogeneous etiology and pathophysiology of schizophrenia (SZP) is reasonably inadequate and non-deterministic due to its inherent complexity and underlying vast dynamics related to genetic mechanisms. The evolution of large-scale transcriptome-wide datasets and subsequent development of relevant, robust technologies for their analyses show promises toward elucidating the genetic basis of disease pathogenesis, its early risk prediction, and predicting drug molecule targets for therapeutic intervention. In this research, we have scrutinized the genetic basis of SZP through functional annotation and network-based system biology approaches. We have determined 96 overlapping differentially expressed genes (DEGs) from 2 microarray datasets and subsequently identified their interconnecting networks to reveal transcriptome signatures like hub proteins (FYN, RAD51, SOCS3, XIAP, AKAP13, PIK3C2A, CBX5, GATA3, EIF3K, and CDKN2B), transcription factors and miRNAs. In addition, we have employed gene set enrichment to highlight significant gene ontology (e.g., positive regulation of microglial cell activation) and relevant pathways (such as axon guidance and focal adhesion) interconnected to the genes associated with SZP. Finally, we have suggested candidate drug substances like Luteolin HL60 UP as a possible therapeutic target based on these key molecular signatures.It is well recognized that clearance of bacterial infection within the dental pulp precedes pulpal regeneration. However, although the regenerative potential of the human dental pulp has been investigated extensively, its antimicrobial potential remains to be examined in detail. In the current study bactericidal assays were used to demonstrate that the secretome of dental pulp multipotent mesenchymal stromal cells (MSCs) has direct antibacterial activity against the archetypal Gram-positive and Gram-negative bacteria, Staphylococcus aureus and Escherichia coli, respectively, as well as the oral pathogens Streptococcus mutans, Lactobacillus acidophilus, and Fusobacterium nucleatum. Furthermore, a cytokine/growth factor array, enzyme-linked immunosorbent assays, and antibody blocking were used to show that cytokines and growth factors present in the dental pulp MSC secretome, including hepatocyte growth factor, angiopoietin-1, IL-6, and IL-8, contribute to this novel antibacterial activity. This study elucidated a novel and diverse antimicrobial secretome from human dental pulp MSCs, suggesting that these cells contribute to the antibacterial properties of the dental pulp. With this improved understanding of the secretome of dental pulp MSCs and its novel antibacterial activity, new evidence for the ability of the dental pulp to fight infection and restore functional competence is emerging, providing further support for the biological basis of pulpal repair and regeneration.In protein engineering, the contributions of individual mutations to designed combinatorial mutants are unpredictable. Screening designed mutations that affect enzyme catalytic activity enables evolutions towards efficient activities. Here, Bacillus subtilis LipA (BSLA) was selected as a model protein for thermostabilization designs, and the circular dichroism measurements showed six combinatorial designs with improved stability (from 5.81 °C to 13.61 °C). Thioflavine S solubility dmso Based on molecular dynamic simulations, the conformational dynamics of the mutants revealed that mutations alter the populations of conformational states and the increased ensembles of inactive conformations might lead to a reduction in activity. We further demonstrated that the mutations responsible for the reduced enzyme catalytic activity involved a short dynamic correlation path to disturbing the equilibrium conformation of active sites. By removing N82V, which had a close dynamic correlation to the active sites in mutant D3, the redesigned mutant RD3 had an increased activity of 57.6%. By combining computational simulation with experimental verification, this work established that essential sites to counteract the activity-stability trade-off in multipoint combinatorial mutants could be computationally predicted and thus provide a possible strategy by which to indirectly or directly guide protein design.We currently have a binomial approach to managing tuberculosis. Those with active disease, ideally confirmed microbiologically, are treated with a standard 6-month, multi-drug regimen and those with latent infection and no evidence of disease with shorter, one or two drug regimens. Clinicians frequently encounter patients that fall between these two management pathways with some but not all features of disease and this will occur more often with the increasing emphasis on chest X-ray-based systematic screening. The view of tuberculosis as a spectrum of disease states is being increasingly recognised and is leading to new diagnostic approaches for early disease. However, the 6-month regimen for treating disease was driven by the duration required to treat the most extensive forms of pulmonary TB and shorter durations appear sufficient for less extensive disease. It is time undertake clinical trials to better define the optimal treatment for tuberculosis across the disease spectrum.Rapid, accurate, sputum-free tests for tuberculosis (TB) triage and confirmation are urgently needed to close the widening diagnostic gap. We summarise key technologies and review programmatic, systems, and resource issues that could affect the impact of diagnostics. Mid-to-early-stage technologies like artificial intelligence-based automated digital chest X-radiography and capillary blood point-of-care assays are particularly promising. Pitfalls in the diagnostic pipeline, included a lack of community-based tools. We outline how these technologies may complement one another within the context of the TB care cascade, help overturn current paradigms (eg, reducing syndromic triage reliance, permitting subclinical TB to be diagnosed), and expand options for extra-pulmonary TB. We review challenges such as the difficulty of detecting paucibacillary TB and the limitations of current reference standards, and discuss how researchers and developers can better design and evaluate assays to optimise programmatic uptake. Finally, we outline how leveraging the urgency and innovation applied to COVID-19 is critical to improving TB patients’ diagnostic quality-of-care.One-stage combined dynamic reanimation with static suspension has obvious advantages of improving facial symmetry. In clinical observation, patients with different levels of oral commissure drooping achieve different symmetry outcomes, despite undergoing the same surgical procedure. Patients with slight asymmetry obtain better outcomes than those with severe asymmetry. The mechanisms influencing postoperative outcomes have not been systematically explored. We retrospectively analyzed 44 patients performed with masseteric-to-facial nerve transfer combined with static suspension. Patients were divided into two groups according to the level of oral commissure drooping slight-asymmetry group (n = 24) and severe-asymmetry group (n = 20). Static and dynamic symmetry were assessed with FACE-gram software pre and postoperatively. The symmetry of the oral commissures at rest and during smiling significantly improved postoperatively in all patients. The differences of the bilateral oral commissure positions were significantly smaller in slight-asymmetry group than that in severe-asymmetry group (p0.05). In conclusion, masseteric-to-facial nerve transfer combined with static suspension achieved dynamic and static symmetry in patients with different levels of asymmetry. Patients with slight asymmetry obtained better postoperative symmetry than those with severe asymmetry. Postoperative facial asymmetry might be influenced by the hypertonicity of facial muscles on the unaffected side.

    Work relative value units (wRVUs) are linked to clinical reimbursements and physician compensation in the USA and thus should consider the time of the physician providing care. The primary goal of this study is to assess whether wRVUs appropriately consider operative time in plastic and reconstructive surgery.

    The 2015-2018 National Surgical Quality Improvement Program was queried for the 50 most performed plastic surgery cases with assigned wRVUs and a recorded operative time. Linear regressions were used to assess the relationships between operative time, assigned wRVUs, and wRVUs per hour. The procedures with the highest and lowest assigned wRVUs relative to their operative time were identified.

    A total of 31,156 cases were included in this analysis. Among the 50 most performed procedures, the median (range) for assigned wRVUs was 10.0 (1.0-42.6), operative time was 61 min (21-441), and wRVUs per hour was 8.7 (2.2-16.2). There was a strong positive linear correlation between assigned wRVUs and median operative time (R

    =0.