Activity

  • MacPherson Godfrey posted an update 1 day, 21 hours ago

    030) increase in asthma mortality, and non-significantly associated with a 9% (95% CI 1%-19%, p = 0.073) in cardio-respiratory mortality. Better urban ventilation can help disperse vehicle-related pollutants and allow moderation of UHIs, and for a coastal city may allow moderation of cold temperatures. Urban planning should take ventilation into account. Further studies on urban ventilation and health outcomes from different settings are needed.As epigenetic regulators are frequently dysregulated in acute myeloid leukemia (AML) we determined expression levels of the JmjC-protein NO66 in AML cell lines and sub fractions of healthy human hematopoietic cells. NO66 is absent in the AML cell lines KG1/KG1a which consist of cells with the immature CD34+/CD38- phenotype and is regarded as a “stem cell-like” model system. Similarly, NO66 is not detectable in CD34+/CD38- cells purified from healthy donors but is clearly expressed in the more committed CD34+/CD38+ cell population. Loss of NO66 expression in KG1/KG1a cells is due to hyper-methylation of its promoter and is released by DNA-methyltransferase inhibitors. In KG1a cells stably expressing exogenous wild type (KG1a66wt) or enzymatically inactive mutant (KG1a66mut) NO66, respectively, the wild type protein inhibited proliferation and rDNA transcription. Gene expression profiling revealed that the expression of NO66 induces a transcriptional program enriched for genes with roles in proliferation and maturation (e.g.EPDR1, FCER1A, CD247, MYCN, SNORD13). Genes important for the maintenance of stem cell properties are downregulated (e.g. SIRPA, Lin28B, JAML). Our results indicate that NO66 induces lineage commitment towards myeloid progenitor cell fate and suggest that NO66 contributes to loss of stem cell properties.The Locus Coeruleus (LC) is a pontine nucleus involved in many physiological processes, including the control of the sleep/wake cycle (SWC). At cellular level, the LC displays a high density of opioid receptors whose activation decreases the activity of LC noradrenergic neurons. Also, microinjections of morphine administered locally in the LC of the cat produce sleep associated with synchronized brain activity in the electroencephalogram (EEG). Even though much of the research on sleep has been done in the cat, the subcellular location of opioid receptors in the LC and their relationship with LC noradrenergic neurons is not known yet in this species. Therefore, we conducted a study to describe the ultrastructural localization of mu-opioid receptors (MOR), delta-opioid receptors (DOR) and tyrosine hydroxylase (TH) in the cat LC using high resolution electron microscopy double-immunocytochemical detection. MOR and DOR were localized mainly in dendrites (45% and 46% of the total number of profiles respectively), many of which were noradrenergic (35% and 53% for MOR and DOR, respectively). TH immunoreactivity was more frequent in dendrites (65% of the total number of profiles), which mostly also expressed opioid receptors (58% and 73% for MOR and DOR, respectively). Because the distribution of MORs and DORs are similar, it is possible that a substantial sub-population of neurons co-express both receptors, which may facilitate the formation of MOR-DOR heterodimers. Moreover, we found differences in the cat subcellular DOR distribution compared with the rat. This opens the possibility to the existence of diverse mechanisms for opioid modulation of LC activity.Huntington’s disease (HD) is an inherited neurodegenerative disorder which begins in the striatum and then spreads to other neural areas. Known as a progressive movement cognitive disorder, HD has no efficient therapy. Although the exact mechanism of HD is still unknown, several different etiological processes such as oxidative stress have been shown to play critical roles. Also, the current evidence indicates a strong correlation between immune activation and neural damage induced by neuroinflammatory and apoptotic agents in neurodegenerative disorders. Thus, natural products like Elderberry (EB) could be considered as a novel and potential therapeutic candidate for the treatment of this disease. In this study EB was added to the daily ration of ordinary rats for two months in order to ameliorate inflammatory and oxidative responses in rats injected with 3-nitropropionic acid (3-NP) in an experimental model of HD. Using Rotarod and electromyography setups, we showed that EB diet significantly recovered motor failure and muscle incoordination in 3-NP injected rats compared to the control group. Also, the molecular findings implied that EB diet led to a significant drop in 3-NP induced growth in caspase-3 and TNF-α concentration. The treatment also improved striatal antioxidative capacity by a significant reduction in ROS and a remarkable rise in GSH, which might be correlated with motor recovery in the tests. selleck kinase inhibitor In sum, the findings demonstrate the advantages of EB treatment in the HD rat model with a score of beneficial anti-oxidative and anti-inflammatory effects.

    Ischemic stroke (IS) accounts for 80% of stroke incidence, which has an impact on the life quality of patients. Long non-coding RNA (LncRNA), a class of non-coding transcripts greater than 200 nucleotidesin length, has been extensively studied in cerebrovascular diseases. Myocardial infarction associated transcript (MIAT) is highly expressed in nervous system. Therefore this study aims to explore the role of LncRNA MIAT in IS and to clarify its underlying mechanism, providing therapeutic value for the treatment of IS.

    The neurological function of rats was evaluated by neurological deficit score. Triphenyltetrazolium chloride (TTC) staining was used to detect infarct area in brain tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to examine the expression of MIAT. Western blotting was used to detect the expressions of REDD1, p-mTOR, autophagy-related proteins LC3 and p62, and apoptotic-related proteins Bax, cleaved-caspase3, Bcl-2. Flow cytometry was applied to examine neuroAltogether, MIAT promotes autophagy and apoptosis of neural cells and aggravates IS by up-regulating the expression of REDD1.

    Altogether, MIAT promotes autophagy and apoptosis of neural cells and aggravates IS by up-regulating the expression of REDD1.