-
Aycock Little posted an update 1 hour, 12 minutes ago
This study aimed to characterize PM2.5-bound trace elements in Northern Zhejiang Province (NZP), one of the most economically prosperous regions in China, and assess the associated health risks for the general populations. A year-long sampling campaign was conducted at four sites representative of urban, suburban, and rural areas of NZP. GSK2606414 clinical trial The average of the sum of twenty trace elements in PM2.5 was 2.8 ± 0.4 μg m-3, dominated by K, Al, Fe, Mg, Zn, and V (>100 ng m-3). The highest total elements’ concentration occurred in winter, followed by autumn, spring, and summer. Enrichment factors and principal component analysis (PCA) revealed that the major sources of trace elements in NZP were fossil fuel combustion, biomass burning, crustal dust, traffic, and industrial emissions. Elevated concentrations of certain elements reflected featured sources in different areas, e.g., V and Ni from heavy oil combustion in the port city, and Cu, Fe and Ba from traffic emissions in urban areas. Arsenic (As) represented the major non-cancer risk driver as its hazard quotient was 8.7. The cumulative cancer risk from all the carcinogenic elements was 1.7 × 10-3 in NZP, exceeding the upper limit (10-4) of the acceptable risk range. As and Cr contributed 33% and 66%, respectively, and thus were regarded as cancer risk drivers. The high health risks from PM2.5-bound elements warrant future actions to control their emissions in this region. Priorities should target industrial operations and coal combustion emissions, as informed by the risk drivers.Iron-doped titanium dioxide loaded on activated carbon (Fe-TiO2/AC) was successfully synthesized from oil palm empty fruit bunch (OPEFB) using sol-gel method. The properties of the synthesized pure TiO2, Fe-doped TiO2, AC, TiO2/AC and Fe-TiO2/AC were examined by various techniques such as field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and nitrogen adsorption-desorption analyses at 77 K. FE-SEM revealed that Fe-doped TiO2 particles were dispersed homogeneously on the AC surface. FT-IR demonstrated high surface hydroxylation after Fe doping on TiO2 and UV-Vis DRS showed that Fe-TiO2/AC had the lowest band gap energy. Catalytic performance results proved that Fe dopants could restrict the recombination rate of hole and electron pairs, whereas AC support improved the Malachite Green (MG) adsorption sites and active sites of the hybrid catalyst. Photocatalytic degradation of 100 mg/L MG in the presence of 1.0 g/L 15 wt% Fe-TiO2 incorporated with 25 wt% AC, initial solution pH of 4 and 3 mM H2O2 could achieve the highest removal efficiency of 97% after 45 min light irradiation. This work demonstrates a promising approach to synthesis an inexpensive and efficient Fe-TiO2/AC for the photocatalytic degradation of organic dye.
It is well known that PM
generated by traffic or burning wood is pro-inflammatory and induces various adverse health outcomes in humans. In Sydney, New South Wales, Australia, the main anthropogenic contributors to particulate matter (PM) air pollution are wood combustion heaters, on-road vehicles, and coal-fired power stations. However, the relative toxicity of these local sources has not to date been investigated.
PM
was collected on filters from the same sampling site in Liverpool, one suburb of Sydney. According to the positive matrix factorisation and collection season, filters were representative of either day with high traffic-related air pollution (TRAP), wood smoke, or both TRAP and woodsmoke (mixed air pollution). The elemental composition of the PM was assessed by accelerator-based ion beam analysis techniques (i.e. PIXE & PIGE) and size by Dynamic Light Scattering. Toxicity and inflammation were assessed in-vitro in human bronchial epithelial cells by measuring interleukin-6 (IL-6), interleukin-8 (IL-8) release, and MTT.
Mixed air pollution (TRAP/wood smoke) PM had more nanometer (nm) sized PM than the other two groups. Using an in-vitro model of the lungs, the mixed air pollution PM was the most toxic, whereas the PM from woodsmoke induced greater IL-6 release than TRAP PM. There was no difference in the induction of IL-8 between the three sources of PM.
Marked differences occur in the cellular response to PM from different sources, with differences in both toxicity and inflammation.
Marked differences occur in the cellular response to PM from different sources, with differences in both toxicity and inflammation.In this study, porous magnetic CoFe2O4 nanocrystals (NCs) were successfully synthesized by using bimetal-organic framework (MOF) as a precursor, and used as catalysts to activate peroxymonosulfate (PMS) for the removal of chloramphenicol (CAP) in the solution. The structure and physicochemical properties of CoFe2O4 NCs were thoroughly examined by a series of characterization techniques. The results revealed as-synthesized CoFe2O4 had a nanorod-shaped structure with high specific surface area (83.00 m2 g-1) and pore volume (0.31 cm3 g-1). Furthermore, the degradation efficiency (100%) and the removal of total organic carbon (68.09%) were achieved after 120 min with 0.1 g/L CoFe2O4 NCs, 2 mM PMS and 10 mg/L CAP at pH of 8.20. In addition, effects of catalyst dosage, PMS dosage, initial pH values, CAP concentration and co-existing anions as well as natural organic matters in the solution on the degradation efficiencies were studied and all the removal can be well fitted with pseudo-first-order kinetic model (R2 > 0.96). Sulfate radicals (SO4•-) and hydroxyl radicals (HO•) were proved to be two main reactive species for CAP removal in CoFe2O4/PMS system based on quenching experiments. CAP was degraded by the main pathways of dichlorination, denitration, decarboxylation, hydroxylation, ring cleavage and chain cleavage on CoFe2O4/PMS system through high performance liquid chromatograph-mass spectrometry analysis. We believe that this study would be very meaningful to promote the applications of MOFs-derived catalysts on the SO4•- based advanced oxidation processes (SR-AOPs) for the environmental remediation.