-
Meincke Marcher posted an update 3 days, 22 hours ago
This study investigated the feasibility of integrated ammonium stripping and/or coconut shell waste-based activated carbon (CSWAC) adsorption in treating leachate samples. To valorize unused biomass for water treatment application, the adsorbent originated from coconut shell waste. To enhance its performance for target pollutants, the adsorbent was pretreated with ozone and NaOH. The effects of pH, temperature, and airflow rate on the removal of ammoniacal nitrogen (NH3-N) and refractory pollutants were studied during stripping alone. The removal performances of refractory compounds in this study were compared to those of other treatments previously reported. To contribute new knowledge to the field of study, perspectives on nutrients removal and recovery like phosphorus and nitrogen are presented. It was found that the ammonium stripping and adsorption treatment using the ozonated CSWAC attained an almost complete removal (99%) of NH3-N and 90% of COD with initial NH3-N and COD concentrations of 2500 mg/L and 20,000 mg/L, respectively, at optimized conditions. With the COD of treated effluents higher than 200 mg/L, the combined treatments were not satisfactory enough to remove target refractory compounds. Therefore, further biological processes are required to complete their biodegradation to meet the effluent limit set by environmental legislation. As this work has contributed to resource recovery as the driving force of landfill management, it is important to note the investment and operational expenses, engineering applicability of the technologies, and their environmental concerns and benefits. If properly managed, nutrient recovery from waste streams offers environmental and socio-economic benefits that would improve public health and create jobs for the local community.Siltation has significant economic and social impacts as it directly reduces the useable amount of water in reservoirs. Giving a solution to the issue of sedimentation is a complicated task and maybe one of the most important engineering and environmental challenges of the 21st century. The deposited volume and the distribution pattern of the sediment are often unknown and not easy to assess. The sedimentation process is highly dynamic, initially due to the hydrological conditions of the incoming rivers, but also due to common internal phenomena like resuspension or density currents. Sediment remediation measures such as mechanical sediment removal or flushing are planned based on the sediment thickness distribution and the overall sediment volume/mass. Often, the sediment thickness is calculated through topographic differencing between the pre-impoundment reservoir lake bottom and the actual lake bottom. However, it is common that the previous depth distribution map is not available or in insufficient qualitatisfying results compared to the other systems. The normalized mean absolute error was 22%, and sediment thickness could be detected in areas with up to 1.8 m of sediment. Sediment coring is also a reliable technique for sediment thickness determination. However, the results showed that if only traditional coring devices are used (gravity corer), the limited penetration depth of the equipment combined with sampling disturbances often prevent a correct assessment of the sediment thickness. The overall results of this study can help for an improved decision-making regarding reservoir management. The accurate assessment of sediment volume and distribution can reduce costs for sediment removal and assist in having a precise overview of the reservoir lifetime.Ataxia telangiectasia and Rad3-related protein (ATR) plays a crucial role in cancer and has become a promising target for cancer therapy. Daphnegiravone D (DGD), which could induce apoptosis and oxidative stress in hepatocellular carcinoma (HCC) cells, but the detailed target protein was still unclear. The study provided that the possible target of DGD against HCC cells was determined by isobaric labels for relative and absolute quantification (iTRAQ) assay. In all changed proteins the fold change of ATR was particularly significant. The results from GO, KEGG and PPI analysis showed that DNA damage, cell cycle, apoptosis, DNA repair related pathways changed and ATR was exactly related to them. Moreover, the mRNA and protein of ATR were both decreased in a concentration-dependent manner, and the results of molecular docking also verified the binding. Additionally, cellular thermal shift assay (CETSA) suggested that DGD could directly target at ATR protein. Furthermore, the knockdown of ATR could increase apoptosis and reactive oxygen species (ROS) which induced by DGD. Since ATR inhibitors were generally used in combination with chemotherapy drugs (especially DNA damage drugs) in clinical trials, we investigated the combined application of DGD and oxaliplatin. JHU395 price The results showed that DGD combined with OXA also increased the apoptosis and ROS production of Hep3B cells over either drug alone. Taken together, this study revealed that DGD targeting ATR could be a promising therapeutic strategy for the treatment of liver cancer.The isopimarane diterpene, 1α,11α-dihydroxyisopimara-8(14),15-diene (1), is the major constituents from the rhizomes of Kaempferia marginata (Zingiberaceae), a Thai medicinal plant. The microbial transformation of parent compound 1 by the fungus Cunninghamella echinulata NRRL 1386 gave five new metabolites, 7α,11α-dihydroxy-1-oxoisopimara-8(14),15-diene (2), 3β,7α,11α-trihydroxy-1-oxoisopimara-8(14),15-diene (3), 7β,11α-dihydroxy-1-oxoisopimara-8(14),15-diene (4), 7α-hydroxy-1,11-dioxoisopimara-8(14),15-diene (5) and 1α,7β,11α-trihydroxyisopimara-8(14),15-diene (6), together with three known metabolites, 7-9. The structures of the new metabolites were elucidated by spectroscopic techniques. The known compounds were identified by comparison of the spectroscopic and physical data with those of reported values. The parent compound 1 and the metabolites have been neuroprotective activities evaluated against Aβ25-35-induced damage in human neuroblastoma cells (SK-N-SH). Among them, compounds 1-3, 5 and 7-9 had significant neuroprotective activities at a concentration of 2.