Activity

  • Merritt Nordentoft posted an update 1 week, 1 day ago

    After a treatment regimen of 9 to12 months, all 28 patients were cured. This study highlights the key factors contributing to school-clustered TB outbreaks mainly derived from a single super transmission strain, along with effective interventional measures to prevent a larger scale outbreak. V.The use of electronic vaping products (EVPs) continues to increase worldwide among adult smokers in parallel with accumulating information on their potential toxicity and relative safety compared to tobacco smoke. At this time, in vitro assessments of many widely available EVPs are limited. In this study, an in vitro battery of established assays was used to examine the cytotoxic (Neutral red uptake), genotoxic (In vitro micronucleus) and mutagenic (Bacterial reverse mutation) responses of two commercial EVPs (blu GO™ disposable and blu PLUS+™ rechargeable) when compared to smoke from a reference cigarette (3R4F). In total, 12 commercial products were tested as e-liquids and as aerosols. In addition, two experimental base liquids containing 1.2% and 2.4% nicotine were also assessed to determine the effect of flavour and nicotine on all three assays. Cerdulatinib mouse In the bacterial reverse mutation (Ames) and in vitro micronucleus (IVM) assays, exposures to e-liquids and EVP aerosols, with and without nicotine and in a range of flavourings, showed no mutagenic or genotoxic effects compared to tobacco smoke. The neutral red uptake (NRU) assay showed significantly reduced cytotoxicity (P  less then  .05) for whole undiluted EVP aerosols compared to tobacco smoke, which by contrast was markedly cytotoxic even when diluted. The reduced in vitro toxicological responses of the EVPs add to the increasing body of scientific weight-of-evidence supporting the role of high-quality EVPs as a harm reduction tool for adult smokers. The objective of this study was to elucidate the underlying cardiotoxic mechanism of milrinone, a cAMP phosphodiesterase 3 inhibitor, by evaluating cardiac functions, blood biomarkers including cardiac troponin I (cTnI), microRNAs (miR-1, miR-133a and miR-499a) and various endogenous metabolites, and histopathology in conscious cynomolgus monkeys. Milrinone at doses of 0, 3 and 30 mg/kg were orally administered to monkeys (n = 3-4/group), and the endpoints were evaluated 1 to 24 h post-dosing. Milrinone caused myocardial injuries characterized by myocardial degeneration/necrosis, cell infiltration and hemorrhage 24 h after drug administration. Cardiac functional analysis revealed that milrinone dose-dependently increased the maximum upstroke velocity of the left ventricular pressure and heart rate, and decreased the QA interval and systemic blood pressure 1-4 h post-dosing, being associated with pharmacological action of the drug. In the blood biomarker analysis, only plasma cTnI was dose-dependently increased 4-7 h after drug administration, suggesting that cTnI is the most sensitive biomarker for early detection of milrinone-induced myocardial injuries. In the metabolomics analysis, high dose of milrinone induced transient changes in lipid metabolism, amino acid utilization and oxidative stress, together with the pharmacological action of increased cAMP and lipolysis 1 h post-dosing before the myocardial injuries were manifested by increased cTnI levels. Taken together, milrinone showed acute positive inotropic and multiple metabolic changes including excessive pharmacological actions, resulting in myocardial injuries. Furthermore, a comprehensive analysis of cardiac functions, blood biomarkers and histopathology can provide more appropriate information for overall assessment of preclinical cardiovascular safety. Developing wound dressing that inhibits bacterial infection for treating complex wound healing processes has been a research hotspot. Here, we report the fabrication of Cu-MOFs (HKUST-1) incorporated electrospun chitosan/polyvinyl alcohol (HKUST-1/chitosan/PVA) fibers through the blending electrospinning for wound therapy. HKUST-1/chitosan/PVA fibers displayed satisfying physical properties, such as mechanical property, water uptake, water vapor transmission rate, etc. Cytotoxicity test indicated that HKUST-1/chitosan/PVA fibers were biocompatible and could support cell adhesion. Due to the HKUST-1 incorporation, HKUST-1/chitosan/PVA fibers exhibited the good antibacterial activity against Escherichia coli and Staphylococcus aureus with 99% antibacterial efficiency. Furthermore, in animal studies, compared with commercial chitosan dressings and chitosan/PVA fibers, HKUST-1/chitosan/PVA fibers were more efficient to heal the wound with less inflammation. In summary, the HKUST-1/chitosan/PVA fibers with good physicochemical property, biocompatibility and antibacterial property is an excellent wound dressing for full-thickness skin repair. Gleditsia sinensis, fenugreek and guar galactomannans (referred to as GSG, FG, and GG) were extracted from their gums and investigated using various techniques. Mannose to galactose ratios were 3.55, 1.11, and 1.65, respectively. The intrinsic viscosity of GSG was very close to that of GG, while that of FG was the lowest one. This was attributed to the influence of high galactose substitution of FG on the mannan backbone, which induced a lower chain dimension due to intermolecular entanglement. High degrees of substitution and high temperatures contributed to improving the solubility of galactomannan. Rheological behavior indicated that GG had the highest apparent viscosity, yet the power-law model could well-fitted the flow curves of GSG and FG, but not GG. Through morphological observations, the extracted galactomannans exhibited rod-like structure in deionized water and showed fibrous filament network structure after dehydration by freeze-drying. The thermal behavior was greatly influenced by the degree of side groups and Mw of galactomannans. V.Inspired from biological motors, cellulose nanocrystals (CNCs) are strategically modified to induce self-propulsion behavior with the capabilities to catalytically degrade pollutants along with magnetic hyperthermia to clean arterial plaques during its course of propulsion. CNCs derived from renewable biomass, are decorated with catalytically active, magneto-responsive nanomaterials (Fe2O3/Pd nanoparticles) through sustainable routes. CNC nanomotors show improved propulsion at lowered peroxide concentrations with remotely controlled trajectory through chemo-magnetic field gradients and ideal surface-wettability characteristics, overcoming the requirement of surfactants, as with traditional nanomotors. We observed that nanomotors undergo motion through heterogeneous bubble propulsion mechanism, with capability to in situ degrade pollutants and generate local heat through hyperthermia, enhancing the rate of degradation process in real time. As proof of concept, we demonstrate that the dynamics of nanomotors can be controlled in a microfluidic channel through site-directed magnetic field and induction of pH gradient, mimicking the chemotaxis in cell-like environment and as swarm of nano-surgeons removes plaques from clogged arteries.