Activity

  • Kaya Snider posted an update 1 week, 6 days ago

    Mesenchymal stem cells (MSCs) have the capability to differentiate into multiple cell lineages, and produce trophic factors to facilitate tissue repair and regeneration, and disease regression. However, the heterogeneity of MSCs, whether inherent or developed during culture expansion, has a significant impact on their therapeutic efficacy. Therefore, the ability to identify and select an efficacious subpopulation of MSCs targeting specific tissue damage or disease holds great clinical significance. In this study, we separated three subpopulations from culture expanded human bone marrow derived MSCs according to cell size, using a high-throughput label-free microfluidic cell sorting technology. The size-sorted MSC subpopulations varied in tri-lineage differentiation potencies. The large MSCs showed the strongest osteogenesis, medium-size MSCs were advantageous in chondrogenesis and adipogenesis, and the small MSCs showed the weakest tri-lineage differentiation. The size-sorted MSC subpopulations also exhibited different secretome profiles. The large MSC secretome possessed highest levels of osteogenic promotor proteins and senescence-associated factors, but lower levels of osteogenic inhibitor proteins compared to the medium-size MSC secretome. The medium-size MSC secretome had high levels of chondrogenic promotor proteins, and contained lower levels of chondrogenic inhibitor proteins compared to the large MSC secretome. The secretome of size-sorted MSC subpopulations showed differences in paracrine effects. We found that the secretome of large MSCs enhanced osteogenic and adipogenic potencies during MSC culture expansion, but also induced cell senescence; and the secretome of medium-size MSCs promoted chondrogenesis. This study demonstrates size-dependent differentiation potency and secretome profile of MSC subpopulations, and provides an effective and practical technology to isolate the respective subpopulations, which may be used for more targeted tissue repair and regeneration. Patients with aortic heart valve disease are limited to valve replacements that lack the ability to grow and remodel. This presents a major challenge for pediatric patients who require a valve capable of somatic growth and at a smaller size. A patient-specific heart valve capable of growth and remodeling while maintaining proper valve function would address this major issue. Here, we recreate the native valve leaflet structure composed of poly-ε-caprolactone (PCL) and cell-laden gelatin-methacrylate/poly (ethylene glycol) diacrylate (GelMA/PEGDA) hydrogels using 3D printing and molding, and then evaluate the ability of the multilayered scaffold to produce collagen matrix under physiological shear stress conditions. We also characterized the valve hemodynamics under aortic physiological flow conditions. The valve’s fibrosa layer was replicated by 3D printing PCL in a circumferential direction similar to collagen alignment in the native leaflet, and GelMA/PEGDA sustained and promoted cell viability in the spongiosa/ventricularis layers. We found that collagen type I production can be increased in the multilayered scaffold when it is exposed to pulsatile shear stress conditions over static conditions. When the PCL component was mounted onto a valve ring and tested under physiological aortic valve conditions, the hemodynamics were comparable to commercially available valves. Our results demonstrate that a structurally representative valve leaflet can be generated using 3D printing and that the PCL layer of the leaflet can sustain proper valve function under physiological aortic valve conditions. BACKGROUND Stuttering and speech sound disorder may co-occur during early childhood, although the exact rate of comorbidity in a community-cohort sample remains unknown. In isolation, both disorders have the potential for long-term negative effects. Comorbidity rates of 16%-46% reported in previous studies were based on parent report, speech-language therapist surveys, case file audits or direct observation studies from clinical samples. Rigorous methodology utilising a prospective, longitudinal community-cohort design is required to support these previous findings. AIMS First, to identify the proportion of children with comorbid stuttering and speech sound disorder at 4 years of age drawn from a community-cohort study. Second, to compare demographic and clinical features of this comorbid diagnosis group compared to children with no diagnosis of either disorder, or those with either disorder in isolation. METHODS & PROCEDURES Participants were drawn from a prospective, longitudinal community cohort study (thes more frequently. Accurate representation of prevalence allows for population specific research on best practice assessment and intervention. Currently little is known about how best to manage this caseload, therefore more research is required in this area, including the determination of prognostic variables to provide efficient and effective management. From our research group, it was noticed that oseltamivir derivatives targeting 150-cavity of neuraminidase enzyme (NA) could significantly increase antiviral activity. Thus, we further enriched the C5-NH2 position of oseltamivir structure to obtain more potent oseltamivir derivatives. In this article a series of oseltamivir derivatives were synthesized by modifying C5-NH2 position of oseltamivir. All the compounds were evaluated for in vitro antiviral activity against H5N1 and H5N8. Encouragingly, compounds 9a and 11e were exhibited prominent activity, which is similar to oseltamivir carboxylate (OSC) and in NAs inhibitory assay, 11e showed remarkable potency against N1 (H5N1), N2 (H5N2), N6 (H5N6) and N8 (H5N8). In addition, 11e demonstrated low cytotoxicity and no obvious toxicity at the dose of 1500 mg/kg in mice. Molecular docking studies of 9a and 11e provided a plausible rationale for the high potency against group-1 NAs. This work provided new insights to design further neuraminidase inhibitors, which can help to investigate new potent inhibitors for group-1 and group-2 shortly. Morphine and its derivatives play inevitably important role in the μ-opioid receptor (MOR) targeted antinociception. A structure-activity relationship study is presented for novel and known orvinol and thevinol derivatives with varying 3-O, 6-O, 17-N and 20-alkyl substitutions starting from agonists, antagonists and partial agonists. In vitro competition binding experiments with [3H]DAMGO showed low subnanomolar affinity to MOR. Apoptosis inhibitor Generally, 6-O-demethylation increased the affinity toward MOR and decreased the efficacy changing the pharmacological profile in some cases. In vivo tests in osteoarthritis inflammation model showed significant antiallodynic effects of thevinol derivatives while orvinol derivatives did not. The pharmacological character was modelled by computational docking to both active and inactive state models of MOR. Docking energy difference for the two states separates agonists and antagonists well while partial agonists overlapped with them. An interaction pattern of the ligands, involving the interacting receptor atoms, showed more efficient separation of the pharmacological profiles.