-
Small Thomasen posted an update 1 week, 1 day ago
Osteoclasts (OCs) and much less dendritic cells (DCs) induce significant expansion and functional activation of NK cells, and furthermore, the OC-expanded NK cells preferentially increase the expansion and activation of CD8+ T cells by targeting CD4+ T cells. When autologous OCs were used to expand patient NK cells much lower percentages of expanded CD8+ T cells, decreased numbers of expanded NK cells and decreased functions of NK cells could be observed, and the addition of allogeneic healthy OCs increased the patients’ NK function. Mechanistically, OC-expanded NK cells were found to lyse CD4+ T cells but not CD8+ T cells suggesting potential selection of CD8+ T cells before their expansion by OC activated NK cells. In agreement, Increased IFN-γ secretion, and NK cell-mediated cytotoxicity and higher percentages of CD8+ T cells, in various tissue compartments of oral tumor-bearing hu-BLT mice in response to immunotherapy by OC-expanded NK cells were observed. Thus, our results indicate an important relationship between NK and CD8+ T cells.Modern day aerobic respiration in mitochondria involving complex I converts redox energy into chemical energy and likely evolved from a simple anaerobic system now represented by hydrogen gas-evolving hydrogenase (MBH) where protons are the terminal electron acceptor. Here we present the cryo-EM structure of an early ancestor in the evolution of complex I, the elemental sulfur (S0)-reducing reductase MBS. Three highly conserved protein loops linking cytoplasmic and membrane domains enable scalable energy conversion in all three complexes. MBS contains two proton pumps compared to one in MBH and likely conserves twice the energy. The structure also reveals evolutionary adaptations of MBH that enabled S0 reduction by MBS catalyzed by a site-differentiated iron-sulfur cluster without participation of protons or amino acid residues. This is the simplest mechanism proposed for reduction of inorganic or organic disulfides. It is of fundamental significance in the iron and sulfur-rich volcanic environments of early earth and possibly the origin of life. MBS provides a new perspective on the evolution of modern-day respiratory complexes and of catalysis by biological iron-sulfur clusters.The plastic zone range is an important parameter in the analysis of damage characteristics and the degree of damage to the rock surrounding a roadway. Based on the establishment of a plastic zone calculation model considering the creep effect, this paper obtains the characteristics of the change in the plastic zone damage range with time by solving the model. Additionally, the validity of the model is verified by field experiments. The research results can provide guidance for gas pressure measurement and gas drainage in coal mines.Defective left-right (LR) organization involving abnormalities in cilia ultrastructure causes laterality disorders including situs inversus (SI) and heterotaxy (Htx) with the prevalence approximately 1/10,000 births. In this study, we describe two unrelated family trios with abnormal cardiac LR patterning. Through whole-exome sequencing (WES), we identified compound heterozygous mutations (c.805-1G >C; p. Ile269GlnfsTer8/c.1117dupA; p.Thr373AsnfsTer19) (c.29T>C; p.Ile10Thr/c.356A>G; p.His119Arg) of NEK3, encoding a NIMA (never in mitosis A)-related kinase, in two affected individuals, respectively. Protein levels of NEK3 were abrogated in Patient-1 with biallelic loss-of function (LoF) NEK3 mutations that causes premature stop codon. Subsequence transcriptome analysis revealed that NNMT (nicotinamide N-methyltransferase) and SIRT2 (sirtuin2) was upregulated by NEK3 knockdown in human retinal pigment epithelial (RPE) cells in vitro, which associates α-tubulin deacetylation by western blot and immunofluorescence. Transmission electron microscopy (TEM) analysis further identified defective ciliary ultrastructure in Patient-1. Furthermore, inner ring components of nuclear pore complex (NPC) including nucleoporin (NUP)205, NUP188, and NUP155 were significantly downregulated in NEK3-silenced cells. In conclusion, we identified biallelic mutations of NEK3 predispose individual to abnormal cardiac left-right patterning via SIRT2-mediated α-tubulin deacetylation and downregulation of inner ring nucleoporins. Our study suggested that NEK3 could be a candidate gene for human ciliopathies.SMARCA4 and EZH2 are two functional key players of their respective antagonizing chromatin remodeling complexes SWI/SNF and PRC2. EZH2 inhibitory drugs may abrogate pro-oncogenic features of PRC2 and turn the balance to cell differentiation via SWI/SNF activity in cancers. SMARCA4 and EZH2 expression was assessed by RT-PCR in 238 epithelial ovarian cancers (OCs) and put in relation to clinico-pathological parameters and patients’ outcome. PS-341 Optimal thresholds for high and low expression of both variables were calculated by the Youden’s index based on receiver operating characteristic (ROC) curves. High SMARCA4 mRNA expression was independently associated with favorable progression-free survival (PFS) (P = 0.03) and overall survival (OS) (P = 0.018). As Youden’s threshold determination for EZH2 yielded a S-shaped ROC-curve, two cut-off points (29th and 94th percentile) predicting opposite features were defined. Whereas EZH2 mRNA levels beyond the 29th percentile independently predicted poor PFS (P = 0.034), Cox-regression in EZH2 transcripts above the 94th percentile revealed a conversion from unfavorable to favorable PFS and OS (P = 0.009 and P = 0.032, respectively). High SMARCA4 expression associates with improved survival, whereas moderate/high EZH2 expression predicts poor outcome, which converts to favorable survival in ultra-high expressing OCs. This small OC subgroup could be characterized by REV7-abrogated platinum hypersensitivity but concomitant PARP-inhibitor resistance.There have been few reports on fixation of Rommens classification Type IIIA fragility fractures of the pelvis (FFPs). Here, we present our less invasive surgical technique, called iliac intramedullary stabilization (ILIS), for the internal fixation of Type IIIA FFPs. The technique involves a closed reduction, termed the femur internal rotation reduction method (FIRM), whereby the fracture fragments are repositioned using lateral rotators by internally rotating the femur while the patient is in the prone position. Two iliac screws are inserted on the ilium bilaterally via the supra-acetabular bone canal during FIRM and connected with two transverse rods and two cross connectors. We refer to this internal fixation procedure as ILIS. We retrospectively recruited patients with Type IIIA fractures, treated using this procedure, at our institute between October 2017 and October 2019. We evaluated operative and post-operative outcomes. We enrolled 10 patients (9 women and 1 man; mean age, 85.2 years) who were followed up for over 6 months.