Activity

  • Jonsson Andersen posted an update 1 week, 1 day ago

    botic diseases.

    Apigenin is one of the most abundant dietary flavonoids that possesses multiple bio-functions.

    This study was designed to determine the influence of apigenin on gene expressions, cancer cells, as well as STAT1/COX-2/iNOS pathway mediated inflammation and tumorigenesis in HEK293-STAT1 cells. Furthermore, the cytotoxic activity toward multiple myeloma (MM) cell lines was investigated.

    Bioinformatic analyses were used to predict the sensitivity and resistance of tumor cells toward apigenin and to determine cellular pathways influenced by this compound. The cytotoxic and ferroptotic activity of apigenin was examined by the resazurin reduction assay. Additionally, we evaluated apoptosis, and cell cycle distribution, induction of reactive oxygen species (ROS) and loss of integrity of mitochondrial membrane (MMP) by using the flow cytometry analysis. DAPI staining was used to detect characteristic apoptotic features. Furthermore, we verified its anti-inflammatory and additional mechanism of cell death by westee a suitable candidate for MM treatment. The inhibition of the STAT1/COX-2/iNOS signaling pathway by apigenin is an important mechanism not only in the suppression of inflammation but also in induction of apoptosis.

    Apigenin may be a suitable candidate for MM treatment. The inhibition of the STAT1/COX-2/iNOS signaling pathway by apigenin is an important mechanism not only in the suppression of inflammation but also in induction of apoptosis.The global effort to combat and contain the coronavirus disease 2019 (COVID-19) caused by the recently discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now proceeding on a war footing. The world was slow to react to the developing crisis, but once the contours of the impending calamity became evident, the different state and non-state actors have raced to put their act together. The COVID-19 pandemic has blatantly exposed the shortcomings of our healthcare system and the limitations of medical science, despite considerable advances in recent years. To effectively tackle the current pandemic, almost unprecedented in the modern age, there is an urgent need for a concerted, sustained, and coordinated effort towards the development of new diagnostics, therapeutic and vaccines, and the ramping up of the healthcare infrastructure, especially in the poorer underprivileged nations. Towards this end, researchers around the world are working tirelessly to develop new diagnostics, vaccines, and therapeutics. Efforts to develop a vaccine against COVID-19 are presently underway in several countries around the world, but a new vaccine is expected only by the end of the year-at the earliest. New drug development against COVID-19 and its approval may take even longer. Under such circumstances, drug repurposing has emerged as a realistic and effective strategy to counter the current menace, and several antiviral and antimalarial medicines are currently in different stages of clinical trials. HS-10296 datasheet Researchers are also experimenting with nutrients, vitamins, monoclonal antibodies, and convalescent plasma as immunity boosters against the SARS-CoV-2. This report presents a critical analysis of the global clinical trial landscape for COVID-19 with an emphasis on the therapeutic agents and vaccines currently being tested at pandemic speed.Human African trypanosomiasis, or sleeping sickness, is a neglected tropical disease caused by Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense which seriously affects human health in Africa. Current therapies present limitations in their application, parasite resistance, or require further clinical investigation for wider use. Our work herein describes the design and syntheses of novel antitrypanosomal 4-phenyl-6-(pyridin-3-yl)pyrimidines, with compound 13, the 4-(2-methoxyphenyl)-6-(pyridine-3-yl)pyrimidin-2-amine demonstrating an IC50 value of 0.38 μM and a promising off-target ADME-Tox profile in vitro. In silico molecular target investigations showed rhodesain to be a putative candidate, supported by STD and WaterLOGSY NMR experiments, however, in vitro evaluation of compound 13 against rhodesain exhibited low experimental inhibition. Therefore, our reported library of drug-like pyrimidines present promising scaffolds for further antikinetoplastid drug development for both phenotypic and target-based drug discovery.

    To review and summarize the available literature on the management of chemotherapy-induced alopecia (CIA) including complementary and alternative medicine (CAM), and to present CIA’s effect on quality of life (QoL).

    Nine databases were searched for CIA-related keywords, including the effect on QoL, and management options. Among 1019 articles found, 54 articles focusing on treatment/prevention or QoL were retrieved. References of selected articles were also checked manually.

    CIA was found to negatively affect QoL and body image, regardless of head covering status (i.e., for cultural or religious reasons). Most studies related to treatment/prevention of CIA reported on the use of scalp-cooling. The efficacy of CAM treatments was found to be questionable.

    A high incidence rate of CIA exists with certain chemotherapies, and it significantly impairs QoL. Preventive and treatment strategies are incompletely effective. Additional literature is needed to explore potential preventive or therapeutic options for CIA.

    A high incidence rate of CIA exists with certain chemotherapies, and it significantly impairs QoL. Preventive and treatment strategies are incompletely effective. Additional literature is needed to explore potential preventive or therapeutic options for CIA.Elicited soybean (Glycine max (L.) Merrill, Leguminosae) seedlings can produce prenylated isoflavonoids from different subclasses, namely pterocarpans (glyceollins), isoflavones and coumestans. These prenylated isoflavonoids serve as defence compounds and can possess antimicrobial activity. Recently, we showed that priming with reactive oxygen species (ROS) specifically stimulated the production of glyceollins in Rhizopus spp.-elicited soybean seedlings (ROS + R). In this study, we achieved diversification of the inducible subclasses of prenylated isoflavonoids in soybean, by additional stimulation of two prenylated isoflavones and one prenylated coumestan. This was achieved by using a combination of the relatively long-lived ROS representative, H2O2, with AgNO3 prior to microbial elicitation. Microbial elicitation was performed with a live preparation of either a phytopathogenic fungus, Rhizopus spp. or a symbiotic bacterium, Bacillus subtilis. B. subtilis induced 30% more prenylated isoflavones than Rhizopus spp.