Activity

  • Lindgaard Kristensen posted an update 1 week ago

    found that HF patients had a low DDS and more than half of the patients were food insecure to some extents.

    A challenge faced by animals living in groups with stable long-term membership is to effectively coordinate their actions and maintain cohesion. However, as seasonal conditions alter the distribution of resources across a landscape, they can change the priority of group members and require groups to adapt and respond collectively across changing contexts. Little is known about how stable group-living animals collectively modify their movement behaviour in response to environment changes, such as those induced by seasonality. Further, it remains unclear how environment-induced changes in group-level movement behaviours might scale up to affect population-level properties, such as a population’s footprint.

    Here we studied the collective movement of each distinct social group in a population of vulturine guineafowl (Acryllium vulturinum), a largely terrestrial and non-territorial bird. We used high-resolution GPS tracking of group members over 22 months, combined with continuous time movement models, to captved in response to different environments raise questions about the role of collective behaviour in facilitating, or impeding, the capacity for individuals to respond to novel environmental conditions. As droughts will be occurring more often under climate change, some group living animals may have to respond to them by expressing dramatic shifts in their regular movement patterns. These shifts can have consequences on their ranging behaviours that can scale up to alter the footprints of animal populations.

    Human skin color is highly heritable and one of the most variable phenotypic traits. However, the genetic causes and environmental selective pressures underlying this phenotypic variation have remained largely unknown. To investigate whether the pigmentation related-genes polymorphisms are associated with the geographic environmental variables. We selected randomly 795 healthy individuals from eight ethnic groups in nine provinces in China. Six single nucleotide polymorphisms (SNPs) of SLC45A2 and TYR were genotyped using Agena MassARRAY. The Chi-square test and Spearman correlation analysis were used to compare the frequency distribution of genotypes among different ethnic groups and evaluate the relationship between SNP genetic diversity and environmental variables, respectively.

    The results indicated that rs28777 and rs183671 (SLC45A2) and rs1042602 (TYR) genotype frequency distributions were significantly different between the Xinjiang-Uighur and other ethnic groups (P < 0.05). Spearman correlationed gene polymorphisms.In the era of climate change, due to increased incidences of a wide range of various environmental stresses, especially biotic and abiotic stresses around the globe, the performance of plants can be affected by these stresses. After oxygen, silicon (Si) is the second most abundant element in the earth’s crust. It is not considered as an important element, but can be thought of as a multi-beneficial quasi-essential element for plants. This review on silicon presents an overview of the versatile role of this element in a variety of plants. Plants absorb silicon through roots from the rhizospheric soil in the form of silicic or monosilicic acid. Silicon plays a key metabolic function in living organisms due to its relative abundance in the atmosphere. Plants with higher content of silicon in shoot or root are very few prone to attack by pests, and exhibit increased stress resistance. However, the more remarkable impact of silicon is the decrease in the number of seed intensities/soil-borne and foliar diseases of major plant varieties that are infected by biotrophic, hemi-biotrophic and necrotrophic pathogens. The amelioration in disease symptoms are due to the effect of silicon on a some factors involved in providing host resistance namely, duration of incubation, size, shape and number of lesions. Selleckchem Epigenetic inhibitor The formation of a mechanical barrier beneath the cuticle and in the cell walls by the polymerization of silicon was first proposed as to how this element decreases plant disease severity. The current understanding of how this element enhances resistance in plants subjected to biotic stress, the exact functions and mechanisms by which it modulates plant biology by potentiating the host defence mechanism needs to be studied using genomics, metabolomics and proteomics. The role of silicon in helping the plants in adaption to biotic stress has been discussed which will help to plan in a systematic way the development of more sustainable agriculture for food security and safety in the future.

    The discrepancy between actual and ideal body image is considered an index of body dissatisfaction and a risk factor for eating disorders. While discrepancy has been traditionally tested with figural drawing rating scales, in recent times the use of implicit measures has been explored.

    This study employs the Implicit Relational Assessment Procedure (IRAP) to examine actual-ideal body-size discrepancy in a sample of 130 Spanish college students, as well as its utility to predict symptoms of eating disorders and other body-image relevant measures. Participants completed the Contour Drawing Rating Scale (CDRS). The three smallest and the three largest contour drawings of the CDRS were used as target stimuli in two different IRAP tasks one in combination with the sample phrases “I am” and “I am not” (that assessed implicit actual body image), another in combination with the phrases “I want to be” and “I don’t want to be” (that assessed implicit ideal body image). After completing both IRAP tasks, participantsscore the need for further research on specific body image implicit beliefs towards fatness, both in subclinical and clinical populations, in order to examine whether willingness to accept the idea that one can have a larger body size can be a suitable target for prevention and intervention in eating disorders.

    Captive rearing is often critical for animals that are vulnerable to extinction in the wild. However, few studies have investigated the extent to which captivity impacts hosts and their gut microbiota, despite mounting evidence indicating that host health is affected by gut microbes. We assessed the influence of captivity on the gut microbiome of the Brown Kiwi (Apteryx mantelli), a flightless bird endemic to New Zealand. We collected wild (n = 68) and captive (n = 38) kiwi feces at seven sites on the north island of New Zealand.

    Using bacterial 16S rRNA and fungal ITS gene profiling, we found that captivity was a significant predictor of the kiwi gut bacterial and fungal communities. Captive samples had lower microbial diversity and different composition when compared to wild samples. History of coccidiosis, a gut parasite primarily affecting captive kiwi, showed a marginally significant effect.

    Our findings demonstrate captivity’s potential to shape the Brown Kiwi gut microbiome, that warrant further investigation to elucidate the effects of these differences on health.