Activity

  • Keller Boje posted an update 1 week ago

    The pathogenesis of coronavirus disease 2019 (COVID-19) is still incompletely understood, but it seems to involve immune activation and immune dysregulation.

    We examined the parameters of activation of different leukocyte subsets in COVID-19-infected patients in relation to disease severity.

    We analyzed plasma levels of myeloperoxidase (a marker of neutrophil activation), soluble (s) CD25 (sCD25) and soluble T-cell immunoglobulin mucin domain-3 (sTIM-3) (markers of T-cell activation and exhaustion), and sCD14 and sCD163 (markers of monocyte/macrophage activation) in 39 COVID-19-infected patients at hospital admission and 2 additional times during the first 10 days in relation to their need for intensive care unit (ICU) treatment.

    Our major findings were as follows (1) severe clinical outcome (ICU treatment) was associated with high plasma levels of sTIM-3 and myeloperoxidase, suggesting activated and potentially exhausted T cells and activated neutrophils, respectively; (2) in contrast, sCD14 and sCD163 showed no association with need for ICU treatment; and (3) levels of sCD25, sTIM-3, and myeloperoxidase were inversely correlated with degree of respiratory failure, as assessed by the ratio of Pao

    to fraction of inspired oxygen, and were positively correlated with the cardiac marker N-terminal pro-B-type natriuretic peptide.

    Our findings suggest that neutrophil activation and, in particular, activated T cells may play an important role in the pathogenesis of COVID-19 infection, suggesting that T-cell-targeted treatment options and downregulation of neutrophil activation could be of importance in this disorder.

    Our findings suggest that neutrophil activation and, in particular, activated T cells may play an important role in the pathogenesis of COVID-19 infection, suggesting that T-cell-targeted treatment options and downregulation of neutrophil activation could be of importance in this disorder.

    Testicular torsion/detorsion (T/D) is a critical medical condition that necessitates prompt surgical intervention to avoid testicular atrophy and infertility. The use of natural compounds may protect against the associated detrimental oxidative stress and inflammatory responses. Interestingly, acetyl-11-keto-β-boswellic acid (AKBA), the main active constituent of Boswellia resin, has shown potent inhibitory effect on 5-lipoxygenase enzyme which converts arachidonic acid into inflammatory mediators. Therefore, this study was conducted to assess the protective mechanisms by which AKBA may protect against testicular T/D injury in rats.

    Male rats were randomly distributed into five groups Sham, AKBA (50mg/kg, p.o.), unilateral testicular T/D, AKBA at two dose levels (25 or 50mg/kg for 15 successive days) followed by T/D. Histological examination and Johnsen’s score were performed to assess testicular injury and perturbations in spermatogenesis. Biochemical parameters included markers of testicular function (sd a novel protective approach that may attenuate the severity of this condition.Cardiovascular disease (CVD) is the most common co-morbidity associated with COVID-19 and the fatality rate in COVID-19 patients with CVD is higher compared to other comorbidities, such as hypertension and diabetes. Preliminary data suggest that COVID-19 may also cause or worsen cardiac injury in infected patients through multiple mechanisms such as ‘cytokine storm’, endotheliosis, thrombosis, lymphocytopenia etc. Autopsies of COVID-19 patients reveal an infiltration of inflammatory mononuclear cells in the myocardium, confirming the role of the immune system in mediating cardiovascular damage in response to COVID-19 infection and also suggesting potential causal mechanisms for the development of new cardiac pathologies and/or exacerbation of underlying CVDs in infected patients. In this review, we discuss the potential underlying molecular mechanisms that drive COVID-19-mediated cardiac damage, as well as the short term and expected long-term cardiovascular ramifications of COVID-19 infection in patients.

    G-protein coupled receptors (GPCRs) tightly regulate platelet function by interacting with various physiological agonists. An essential mediator of GPCR signaling is the G protein αβγ heterotrimers, in which the βγ subunits are central players in downstream signaling. Herein, we investigated the role of Gβγ subunits in platelet function, hemostasis and thrombogenesis.

    To achieve this goal, platelets from both mice and humans were employed in the context of a small molecule inhibitor of Gβγ, namely gallein. We used an aggregometer to examine aggregation and dense granules secretion. We also used flow cytometry for P-selectin and PAC1 to determine the impact of inhibiting Gβγ on α -granule secretion and αIIbβ3 activation. Clot retraction and the platelet spreading assay were used to examine Gβγ role in outside-in platelet signaling, whereas Western blot was employed to examine its role in Akt activation. Finally, we used the bleeding time assay and the FeCl

    -induced carotid-artery injury thrombosis model to determine Gβγ contribution to in vivo platelet function.

    We observed that gallein inhibits platelet aggregation and secretion in response to agonist stimulation, in both mouse and human platelets. Furthermore, gallein also exerted inhibitory effects on integrin αIIbβ3 activation, clot retraction, platelet spreading and Akt activation/phosphorylation. Finally, gallein’s inhibitory effects manifested in vivo, as documented by its ability to modulate physiological hemostasis and delay thrombus formation.

    Our findings demonstrate, for the first time, that Gβγ subunits directly regulate GPCR-dependent platelet function, in vitro and in vivo. Moreover, these data highlight Gβγ as a novel therapeutic target for managing thrombotic disorders.

    Our findings demonstrate, for the first time, that Gβγ subunits directly regulate GPCR-dependent platelet function, in vitro and in vivo. Moreover, these data highlight Gβγ as a novel therapeutic target for managing thrombotic disorders.

    To investigate how the interaction of CtBP2 with ZBTB18 affect glioblastoma (GBM).

    Western blotting was performed to detect CtBP2 and ZBTB18 expression in GBM and normal brain tissues (NBT). U-87 MG cells were transfected with ZBTB18 CRISPR activation plasmid, CtBP2 shRNA with/without ZBTB18 shRNA. The biological characteristics were detected by EdU assay, MTT, Wound-healing, Transwell, TUNEL staining, and Flow cytometry. STING inhibitor C-178 Furthermore, U-87 MG cells transfected with CtBP2 shRNA and/or ZBTB18 shRNA were injected into the flank region of mice and the tumor volume was measured. The mRNA and protein expression was quantified by qRT-PCR or Western blotting.

    GBM tissues exhibited increased CtBP2 expression and decreased ZBTB18 expression, which demonstrated a negative correlation in GBM tissues and showed the combined effect on prognosis. Based on immunoprecipitation and immunofluorescence, there was an interaction between CtBP2 and ZBTB18 in U-87 MG cells. CtBP2 shRNA counteracted the effect of ZBTB18 shRNA on inhibiting U-87 MG cell apoptosis, as well as promoting cell proliferation and viability with increased EMT, invasion and migration.