Activity

  • Stokes Cahill posted an update 18 hours, 42 minutes ago

    Three selected metallogelators, namely, 3UMEFg, 3UNAPg, and 3UMECg, showed in vitro anticancer, cell imaging, and multidrug delivery for antibacterial applications, respectively. The shear-thinning properties of 3UMECg (rheoreversibility and injectability) make it a potential candidate for plausible topical application.A van der Waals bonded moiré bilayer formed by sequential growth of TiSe2 and TiTe2 monolayers exhibits emergent electronic structure as evidenced by angle-resolved photoemission band mapping. The two monolayers adopt the same lattice orientation but incommensurate lattice constants. Despite the lack of translational symmetry, sharp dispersive bands are observed. The dispersion relations appear distinct from those for the component monolayers alone. Theoretical calculations illustrate the formation of composite bands by coherent electronic coupling despite the weak interlayer bonding, which leads to band renormalization and energy shifts.Ruthenium(II) complexes are currently considered attractive alternatives to the widely used platinum-based drugs. We present herein the synthesis and characterization of half-sandwich ruthenium compounds formulated as [Ru(p-cymene)(L)Cl][CF3SO3] (L = 1,1-bis(methylenediphenylphosphano)ethylene, 1; L = 1,1-bis(diphenylphosphano)ethylene, 2), which were characterized by elemental analysis, mass spectrometry, 1H and 31P1H NMR, UV-vis and IR spectroscopy, conductivity measurements and cyclic voltammetry. The molecular structures for both complexes were determined by single-crystal X-ray diffraction. Their cytotoxic activity was evaluated using the MTT assay against human tumor cells, namely ovarian (A2780) and breast (MCF7 and MDA-MB-231). Both complexes were active against breast adenocarcinoma cells, with complex 1 exhibiting a quite remarkable cytotoxicity in the submicromolar range. Interestingly, at concentrations equivalent to the IC50 values in the MCF7 cancer cells, complexes 1 and 2 presented lower cytotoxicity in normal human primary fibroblasts. The antiproliferative effects of 1 and 2 in MCF7 cells might be associated with the induction of reactive oxygen species (ROS), leading to a combined cell death mechanism via apoptosis and autophagy. Despite the fact that in vitro a partial intercalation between complexes and DNA was observed, no MCF7 cell cycle delay or arrest was observed, indicating that DNA might not be a direct target. Complexes 1 and 2 both exhibited a moderate to strong interaction with human serum albumin, suggesting that protein targets may be involved in their mode of action. Their acute toxicity was evaluated in the zebrafish model. Complex 1 (the most toxic of the two) exhibited a lethal toxicity LC50 value about 1 order of magnitude higher than any IC50 concentrations found for the cancer cell models used, highlighting its therapeutic relevance as a drug candidate in cancer chemotherapy.Crystalline molecular rotors constitute a new class of stimuli-responsive molecular materials owing to inherent molecular dynamics. However, beyond the molecular level, the role of molecular packings on the bulk structures and related properties has yet to be fully understood. Herein, we report a crystalline molecular rotor showing solvent-induced structural transformation and luminescence response. see more The molecular rotor has a dumbbell shape with two plates as the stators and one axial bridging ligand as the rotator. The crystals adopt solvated and desolvated forms with strikingly different packing structures. The solvated forms can easily transform into the desolvated form. During the structure transformation, the butterfly-like conformation of the stator undergoes a drastic dihedral angle change of about 30°, resulting in a luminescent change of about 10 nm. These findings afford a new aspect for functional molecular rotor materials.Radiotherapy has been widely used in clinical cancer treatment. However, the ionizing radiation required to kill the tumor will inevitably cause damage to the surrounding normal tissues. To minimize the radiation damage and side effects, small molecular radioprotective agents have been used as clinical adjuvants for radiation protection of healthy tissues. However, the shortcomings of small molecules such as short circulation time and rapid kidney clearance from the body greatly hinder their biomedical applications. In recent years, nanozymes have attracted much attention because of their potential to treat a variety of diseases. Nanozymes exhibit catalytic properties and antioxidant capabilities to provide a potential solution for the development of high-efficiency radioprotective agents in radiotherapy and nuclear radiation accidents. Therefore, in this review, we systematically summarize the catalytic nanozymes used for radiation protection of healthy tissues and discuss the challenges and future prospects of nanomaterials in the field of radiation protection.All-inorganic halide perovskite (CsPb2Br5) nanocrystals (NCs) have received widespread attention owing to their unique photoelectric properties. This work reports a novel strategy to control the phase transition from CsPbBr3 to CsPb2Br5 and investigates the effects of different treatment times and treatment temperatures on perovskite NCs formation. By controlling the volume of tetraethoxysilane (TEOS) added, the formation of different phases of perovskite powder can be well controlled. In addition, a white light-emitting diode (WLED) device is designed by coupling the CsPbBr3/CsPbBr3-CsPb2Br5 NCs@TEOS nanocomposite and CaAlSiN3Eu2+ commercial phosphor with a 460 nm InGaN blue chip, exhibiting a high luminous efficiency of 57.65 lm/W, color rendering index (CRI) of 91, and a low CCT of 5334 K. The CIE chromaticity coordinates are (0.3363, 0.3419). This work provides a new strategy for the synthesis of CsPbBr3/CsPbBr3-CsPb2Br5 NCs@TEOS nanocomposite, which can be applied to the field of WLEDs and display devices.Spatial segmentation partitions mass spectrometry imaging (MSI) data into distinct regions, providing a concise visualization of the vast amount of data and identifying regions of interest (ROIs) for downstream statistical analysis. Unsupervised approaches are particularly attractive, as they may be used to discover the underlying subpopulations present in the high-dimensional MSI data without prior knowledge of the properties of the sample. Herein, we introduce an unsupervised spatial segmentation approach, which combines multivariate clustering and univariate thresholding to generate comprehensive spatial segmentation maps of the MSI data. This approach combines matrix factorization and manifold learning to enable high-quality image segmentation without an extensive hyperparameter search. In parallel, some ion images inadequately represented in the multivariate analysis were treated using univariate thresholding to generate complementary spatial segments. The final spatial segmentation map was assembled from segment candidates that were generated using both techniques.