Activity

  • Duran Dideriksen posted an update 17 hours, 30 minutes ago

    Thus, the specimen was 7 days old when received in the laboratory and 10 days old when analysed. This case illustrates the dangers of multiple convergent preanalytical errors. Laboratories should be mindful of the stability of analytes in unseparated blood and unusual patterns of results which might suggest a specimen is “old”, and that this may coexist with erroneous request information. Any potential adverse effects on patient care were prevented in this case by laboratory vigilance. Croatian Society of Medical Biochemistry and Laboratory Medicine.Introduction Serum samples of haemodialysed patients collected through vascular access devices, e.g. central venous catheter (CVC) can contain residual heparin, which can cause incomplete clotting and consequently fibrinogen interference in serum protein electrophoresis (SPE). We hypothesized that this problem may be overcome by addition of thrombin and aimed to find a simple thrombin-based method for fibrinogen interference removal. Materials and methods Blood samples of 51 haemodialysed patients with CVC were drawn through catheter into Clot Activator Tube (CAT) and Rapid Serum Tube Thrombin (RST) vacutainers (Becton Dickinson, New Jersey, USA) following the routine hospital protocols and analysed with gel-electrophoresis (Sebia, Lisses, France). Samples were redrawn in the CAT tubes and re-analysed after being treated with thrombin using two methods transferring CAT serum into RST vacutainer and treatment of CAT serum with fibrinogen reagent (Multifibren U, Siemens, Marburg, Germany). Results Direct blood collection in RST proved to be slightly more efficient than CAT in removing the interfering band in beta fraction (CAT removed 6/51 and RST removed 12/51, P = 0.031). Transferring CAT serum into the RST vacutainer proved to be more efficient for subsequent removal of interfering band from CAT serum than the addition of fibrinogen reagent (39/45 vs. 0/45 samples with efficiently removed interfering band, P less then 0.001). Conclusion Fibrinogen interference caused by incomplete clotting because of residual heparin can be overcome by addition of thrombin. Transferring CAT serum into the RST vacutainer was the most efficient method. Croatian Society of Medical Biochemistry and Laboratory Medicine.Introduction The Key incident monitoring and management system program (KIMMS) program collects data for 19 quality indicators (QIs) from Australian medical laboratories. This paper aims to review the data submitted to see whether the number of errors with a higher risk priority number (RPN) have been reduced in preference to those with a lower RPN, and to calculate the cost of these errors. Materials and methods Data for QIs from 60 laboratories collected through the KIMMS program from 2015 until 2018 were retrospectively reviewed. The results for each QI were averaged for the four-year average and coefficient of variation. To review the changes in QI frequency, the yearly averages for 2015 and 2018 were compared. By dividing the total RPN by 4 and multiplying that number by the cost of recollection of 30 AUD, it was possible to assign the risk cost of these errors. Results The analysis showed a drop in the overall frequency of incidents (6.5%), but a larger drop in risk (9.4%) over the period investigated. Recollections per year in Australia cost the healthcare industry 27 million AUD. If the RPN data is used, this cost increases to 66 million AUD per year. Conclusions Errors with a higher RPN have fallen more than those with lower RPN. The data shows that the errors associated with phlebotomy are the ones that have most improved. EGFR tumor Further improvements require a better understanding of the root cause of the errors and to achieve this, work is required in the collection of the data to establish best-practice guidelines. Croatian Society of Medical Biochemistry and Laboratory Medicine.Introduction Laboratories minimize risks through quality control but analytical errors still occur. Risk management can improve the quality of processes and increase patient safety. This study aims to use the failure mode and effect analysis (FMEA) to assess the analytical performance and measure the effectiveness of the risk mitigation actions implemented. Materials and methods The measurands to be included in the study were selected based on the measurement errors obtained by participating in an External Quality Assessment (EQA) Scheme. These EQA results were used to perform an FMEA of the year 2017, providing a risk priority number that was converted into a Sigma value (σFMEA). A root-cause analysis was done when σFMEA was lower than 3. Once the causes were determined, corrective measures were implemented. An FMEA of 2018 was carried out to verify the effectiveness of the actions taken. Results The FMEA of 2017 showed that alkaline phosphatase (ALP) and sodium (Na) presented a σFMEA of less than 3. The FMEA of 2018 revealed that none of the measurands presented a σFMEA below 3 and that σFMEA for ALP and Na had increased. Conclusions Failure mode and effect analysis is a useful tool to assess the analytical performance, solve problems and evaluate the effectiveness of the actions taken. Moreover, the proposed methodology allows to standardize the scoring of the scales, as well as the evaluation and prioritization of risks. Croatian Society of Medical Biochemistry and Laboratory Medicine.Introduction Autovalidation (AV) is an algorithm based on predefined rules designed, among others, to automate and standardize the postanalytical phase of laboratory work. The aim of this study was to examine the overall opinion of Croatian medical biochemistry laboratories regarding various aspects of AV. Material and methods This retrospective study is an analysis of the responses of a survey about AV comprised of 18 questions, as part of Module 10 (“Postanalytical phase of laboratory testing”) of national External Quality Assessment program, administered by the Croatian Centre for Quality Assessment in Laboratory Medicine. Results were reported as percentages of total number of participants in survey or as proportions of observed data if the overall number of data was less then 100. Results 121 laboratories responded to the survey, of which 76% do not use AV, while 11% of laboratories use AV in routine laboratory work. 16/29 laboratories implemented semi-automated AV for general biochemistry (7/29), haematology (5/29), and coagulation (4/29) tests.