-
Sloan Leth posted an update 7 hours, 16 minutes ago
0% within 24 h, and the metabolites were mainly excreted through the urine. In addition, the hypoglycemic activities of paeonol and its metabolites were investigated by a glucose uptake assay on TNF-α mediated insulin resistance in 3T3-L1 adipocytes. The results showed that paeonol and its major metabolites displayed hypoglycemic activities. This is the first comprehensive and systematic report on the pharmacokinetics of paeonol and its metabolites. This research provides an important basis for the clinical development and application of active metabolites. Copyright © 2020 Hu, Ding, Cao, Cheng, Wang, Guang, Li, Koike and Qiu.Digoxin is widely used to treat heart failure. Epidemiological studies suggested it might be used as an anticancer drug or sensitizing agent for cancer therapy. Adriamycin is a well-known anticancer drug, but often causes cardiotoxicity which limits its use. We recently investigated the anticancer effects of digoxin alone or in combination with adriamycin on human non-small cell lung cancer in vitro and in vivo. Digoxin reduced the viability of A549 and H1299 cells in vitro, increased DNA damage by promoting ROS generation and inhibiting both DNA double strand break (DSB) and single strand break (SSB) repair. selleck inhibitor Combination with adriamycin showed synergistic antiproliferative effects at the ratios of 1/2IC50DIGIC50ADR and IC50DIGIC50ADR on A549 and H1299 cells, respectively. In vivo, digoxin potently inhibited A549 growth in both zebrafish and nude mouse xenograft model. Co-treatment with adriamycin not only enhanced the antitumor efficacy, but also reduced the cardiotoxicity. Our findings suggest that digoxin has the potential to be applied as an antitumor drug via inhibiting both DNA DSB and SSB repair, and combination with adriamycin for therapy of human non-small cell lung cancer is reasonable. Copyright © 2020 Wang, Ma, Zhang, Liu, Zhao, Du, Wang, Lin, Zhang, Zhong and Kong.Glutamate overactivity in basal ganglia critically contributes to the exacerbation of dopaminergic neuron degeneration in Parkinson’s disease (PD). Activation of group II metabotropic glutamate receptors (mGlu2/3 receptors), which can decrease excitatory glutamate neurotransmission, provides an opportunity to slow down the degeneration of the dopaminergic system. However, the roles of mGlu2/3 receptors in relation to PD pathology were partially recognized. By using mGlu2/3 receptors agonist (LY354740) and mGlu2/3 receptors antagonist (LY341495) in mice challenged with different cumulative doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we demonstrated that systemic injection of LY354740 reduced the level of extracellular glutamate and the extent of nigro-striatal degeneration in both acute and sub-acute MPTP mice, while LY341495 amplified the lesions in sub-acute MPTP mice only. LY354740 treatment improved behavioral dysfunctions mainly in acute MPTP mice and LY341495 treatment seemed to aggravate motor deficits in sub-acute MPTP mice. In addition, ligands of mGlu2/3 receptors also influenced the total amount of glutamate and dopamine in brain tissue. Interestingly, compared with normal mice, MPTP-treated mice abnormally up-regulated the expression of polo-like kinase 2 (PLK2)/pS129 α-synuclein and phosphorylation of Fyn/N-methyl-D-aspartate receptor subunit 2A/2B (GluN2A/2B). Both acute and sub-acute MPTP mice treated with LY354740 dose-dependently reduced all the above abnormal expression. Compared with MPTP mice treated with vehicle, mice pretreated with LY341495 exhibited much higher expression of p-Fyn Tyr416/p-GluN2B Tyr1472 and PLK2/pS129 α-synuclein in sub-acute MPTP mice models. Thus, our current data indicated that mGlu2/3 receptors ligands could influence MPTP-induced toxicity, which supported a role for mGlu2/3 receptors in PD pathogenesis. Copyright © 2020 Tan, Xu, Cheng, Zheng, Zeng, Wang, Zhang, Yang, Wang, Yang, Nie and Cao.Antiepileptic drug-resistance is a major health problem in patients with cortical dysplasia (CD). Whether drug-resistant epilepsy is associated with progressive brain damage is still debated. We previously generated a rat model of acquired CD, the methylazoxymethanol-pilocarpine (MP) rat, in which the occurrence of status epilepticus and subsequent spontaneous seizures induce progressive brain damage (Nobili et al., 2015). The present study tested the outcome of early-chronic carbamazepine (CBZ) administration on both seizure activity and brain damage in MP rats. We took advantage of the non-invasive CBZ-in-food administration protocol, established by Ali (2012), which proved effective in suppressing generalized convulsive seizures in kainic acid rat model of epilepsy. MP rats were treated immediately after the onset of the first spontaneous seizure with 300 mg/kg/day CBZ formulated in pellets for a two-months-trial. CBZ-treated rats were continuously video-monitored to detect seizure activity and were compared with untreated epileptic MP rats. Despite CBZ serum levels in treated rats were within the suggested therapeutic range for humans, CBZ affected spontaneous convulsive seizures in 2 out of 10 treated rats (responders), whereas the remaining animals (non-responders) did not show any difference when compared to untreated MP rats. Histological analysis revealed cortical thinning paralleled by robust staining of Fluoro-Jade+ (FJ+) degenerating neurons and diffuse tissue necrosis in CBZ-non-responder vs CBZ-responder rats. Data reported here suggest that MP rat model represents suitable experimental setting where to investigate mechanisms of CD-related drug-resistant epilepsy and to verify if modulation of seizures, with appropriate treatment, may reduce seizure-induced brain damage. Copyright © 2020 Nobili, Cattalini, de Grazia, Cagnoli, de Curtis, Battaglia and Colciaghi.Clostridium perfringens (C. perfringens) type A strains are the main cause of gas gangrene in humans and animals. Treatment of this lethal disease is limited, and the prognosis is not good. Alpha-toxin (CPA) and perfringolysin O (PFO) secreted by C. perfringens play irreplaceable roles in cytotoxicity to host cells, persistence in host tissues, and lethality of gas gangrene pathology. This work determined the influence of amentoflavone, a biflavonoid isolated from Selaginella tamariscina and other plants, on hemolysis and cytotoxicity mediated by CPA and PFO and evaluated the in vivo therapeutic effect on gas gangrene. Our data showed that amentoflavone could block the hemolysis and cytotoxicity induced by CPA and PFO in vitro, thereby mediating significant protection against mortality of infected mice in a mouse gas gangrene model, efficient bacterial clearance in tissues and alleviation of histological damage in vivo. Based on the above results, amentoflavone may be a potential candidate against C. perfringens infection by reducing CPA and PFO-mediated virulence.