-
Sexton Glenn posted an update 3 days, 2 hours ago
A rare 3D porous inorganic-organic polyoxoniobate framework based on the cubic polyoxoniobate-cupric-complex cage [Cu(en)2]@[Cu2(en)2(trz)2]6(Nb68O188) (1a), has been successfully synthesized by a hydrothermal method. The cubic cages 1a are connected with 4-(tetrazol-5-yl)pyridine to form a 1D pillar-like chain structure, and every 1D pillar-like chain is further linked with four adjacent pillar-like chains by the [Cu(en)2]2+ complex to form a 3D porous inorganic-organic polyoxoniobate framework with 4-connected CdSO4-type topology. To our knowledge, it is the first time that three different types of organic ligands are simultaneously introduced into one polyoxoniobate. This material also exhibits a high vapor adsorption capacity and good ionic conductivity properties.As two-dimensional (2D) materials are more broadly utilized as components of hybrid materials, controlling their surface chemistry over large areas through noncovalent functionalization becomes increasingly important. Here, we demonstrate a thermally controlled rotary transfer stage that allows areas of a 2D material to be continuously cycled into contact with a Langmuir film. This approach enables functionalization of large areas of the 2D material and simultaneously improves long-range ordering, achieving ordered domain areas up to nearly 10 000 μm2. To highlight the layer-by-layer processing capability of the rotary transfer stage, large-area noncovalently adsorbed monolayer films from an initial rotary cycle were used as templates to assemble ultranarrow gold nanowires from solution. The process we demonstrate would be readily extensible to roll-to-roll processing, addressing a longstanding challenge in scaling Langmuir-Schaefer transfer for practical applications.Tea trichomes contain special flavor-determining metabolites; however, little is known about how and why tea trichomes produce them. Integrated metabolite and transcriptome profiling on tea trichomes in comparison with that on leaves showed that trichomes contribute to tea plant defense and tea flavor and nutritional quality. These unicellular, nonglandular, and unbranched tea trichomes produce a wide array of tea characteristic metabolites, such as UV-protective flavonoids, insect-toxic caffeine, herbivore-defensive volatiles, and theanine, as evidenced by the expression of whole sets of genes involved in different metabolic pathways. Both dry and fresh trichomes contain several volatiles and flavonols that were not found or at much low levels in trichome-removed leaves, including benzoic acid derivatives, lipid oxidation derivatives, and monoterpene derivatives. Trichomes also specifically expressed many disease signaling genes and various antiherbivore or antiabiotic peptides. Trichomes are one of the domestication traits in tea plants. Tea trichomes contribute to tea plant defenses and tea flavors.In recent years, a number of drugs targeting the prostate-specific membrane antigen (PSMA) have become important tools in the diagnosis and treatment of prostate cancer. In the present work, we report on the synthesis and preclinical evaluation of a series of 18F-labeled PSMA ligands for diagnostic application based on the theragnostic ligand PSMA-617. By applying modifications to the linker structure, insight into the structure-activity relationship could be gained, highlighting the importance of hydrophilicity and stereoselectivity on interaction with PSMA and hence the biodistribution. Selected compounds were co-crystallized with the PSMA protein and analyzed by X-rays with mixed results. Among these, PSMA-1007 (compound 5) showed the best interaction with the PSMA protein. The respective radiotracer [18F]PSMA-1007 was translated into the clinic and is, in the meantime, subject of advanced clinical trials.Rigid naphthalene benzimidazole (NBI) based ligands (L1 and L2) are synthesized and utilized to make deep red phosphorescent cyclometalated iridium(III) complexes ([Ir(NBI)2(PyPzCF3)] (1) and [Ir(DPANBI)2(PyPzCF3)] (2)). Complexes 1 and 2 are prepared from the reaction of L1/L2 with the aid of ancillary ligands (PyPzCF3, 2-(3-(trifluoromethyl)-1H-pyrazol-5-yl)pyridine) in a two step method. The complexes are characterized by analytical and spectroscopic methods, as well as X-ray diffraction for 1. These complexes show a strong emission in the range of 635-700 nm that extends up to the near-infrared region (800 nm). The introduction of the diphenylamino (DPA) donor group on the naphthalene unit leads to a further red-shift in the emission. The complexes exhibit radiative quantum efficiency (ΦPL) of 0.27-0.29 in poly(methylmethacrylate) film and relatively short phosphorescence decay lifetimes (τ = 1.1-3.5 μs). The structural, electronic, and optical properties are investigated with the support of density functional theory (DFT) and time-dependent-DFT calculations. The calculation results indicate that the lowest-lying triplet (T1) excited state of 1 has a mixed metal-to-ligand charge transfer (3MLCT) and ligand-centered (3LC) character, while 2 shows a dominant 3LC character. Deep red-emitting organic light-emitting diodes fabricated using 1 as a dopant display a maximum external quantum efficiency of 10.9% with the CIE color coordinates of (0.690, 0.294), with an emission centered at 644 and 700 nm. buy Filipin III Similarly, the emitter 2 also shows a maximum external quantum efficiency of 6.9% with emissions at 657 and 722 nm.Ammonia released from the degradation of protein and/or urea usually leads to suboptimal anaerobic digestion (AD) when N-rich organic waste is used. However, the insights behind the differential ammonia tolerance of anaerobic microbiomes remain an enigma. In this study, the cultivation in synthetic medium with different carbon sources (acetate, methanol, formate, and H2/CO2) shaped a common initial inoculum into four unique ammonia-tolerant syntrophic populations. Specifically, various levels of ammonia tolerance were observed consortia fed with methanol and H2/CO2 could grow at ammonia levels up to 7.25 g NH+-N/L, whereas the other two groups (formate and acetate) only thrived at 5.25 and 4.25 g NH+-N/L, respectively. Metabolic reconstruction highlighted that this divergent microbiome might be achieved by complementary metabolisms to maximize biomethane recovery from carbon sources, thus indicating the importance of the syntrophic community in the AD of N-rich substrates. Besides, sodium/proton antiporter operon, osmoprotectant/K+ regulator, and osmoprotectant synthesis operon may function as the main drivers of adaptation to the ammonia stress.