-
Franck Rodgers posted an update 3 days, 20 hours ago
Our findings established a causal correlation between the FPC and willingness to precommit and suggested a feasible method to enhance self-control in addition to exercising willpower.Depression is a common psychiatric disorder that can occur throughout an individual’s lifespan. Chronic unpredictable mild stress (CUMS) protocol is currently the most commonly used to develop an animal model of depression. Due to the variable duration and procedure of CUMS, it is difficult to reproduce and explore the mechanism of CUMS-induced depression effectively. In the present study, the CUMS-induced behavioral phenotypes were assessed in male C57BL/6J mice at the age of 9-18 weeks. The mice stressed for 3-8 weeks exhibited lower body weight as well as longer immobility time of forced swim and tail suspension test compared to control mice. Moreover, lessening and impairment of hippocampal neurons was found in stressed mice at the age of 18 weeks, which was correlated with increased relative mRNA expression levels of inflammatory cytokines BDNF, Htr1a, and IL-6 in the hippocampus. Nevertheless, no difference between stressed and control mice was observed neither in the sucrose preference nor in the open field test (except for vertical activity in OFT) at the age of 18 weeks. These findings reveal that 3-8 weeks of chronic stress could induce depression-like alterations in male C57BL/6J mice and the behavioral adaptation of aged mice might fail to the availability of the depression model.
Although many clinical studies have reported on the prevalence of dental pain, far fewer studies have focused on the mechanisms of dental pain. This is an important gap because increased understanding of dental pain mechanisms may lead to improved diagnostic tests or therapeutic interventions. The aim of this study was to comprehensively review the literature on the mechanisms of dentinal sensitivity.
PubMed and Ovid were searched for articles that addressed dentinal pain and or pulpal sensitivity. Because of the breadth of research ranging from cellular/molecular studies to clinical trials, a narrative review on the mechanisms of dentinal sensitivity was constructed based on the literature.
Five various mechanisms for dentinal sensitivity have been proposed (1) the classic hydrodynamic theory, (2) direct innervation of dentinal tubules, (3) neuroplasticity and sensitization of nociceptors, (4) odontoblasts serving as sensory receptors, and (5) algoneurons.
These theories are not mutually exclusive, and it is possible that several of them contribute to dentinal sensitivity. Moreover, pulpal responses to tissue injury may alter the relative contribution of these mechanisms. For example, pulpal inflammation may lead to neuronal sprouting and peripheral sensitization. Knowledge of these mechanisms may prompt the development of therapeutic drugs that aim to disrupt these mechanisms, leading to more effective treatments for pulpal pain.
These theories are not mutually exclusive, and it is possible that several of them contribute to dentinal sensitivity. Moreover, pulpal responses to tissue injury may alter the relative contribution of these mechanisms. For example, pulpal inflammation may lead to neuronal sprouting and peripheral sensitization. Knowledge of these mechanisms may prompt the development of therapeutic drugs that aim to disrupt these mechanisms, leading to more effective treatments for pulpal pain.Ascorbate-glutathione (AsA-GSH) cycle plays an important role in tuning beneficial ROS accumulation for intracellular signals and imparts plant tolerance to oxidative stress by detoxifying excess of ROS. Here, we present genome-wide identification of AsA-GSH cycle genes (APX, MDHAR, DHAR, and GR) in several leguminous species and expression analyses in G. max during stress, germination and tissue development. Our data revealed 24 genes in Glycine genus against the maximum of 15 in other leguminous species, which was due to 9 pars of duplicated genes mostly originated from sub/neofunctionalization. Cytosolic APX and MDHAR genes were highly expressed in different tissues and physiological conditions. Germination induced genes encoding AsA-GSH proteins from different cell compartments, whereas vegetative phase (leaves) stimulated predominantly genes related to chloroplast/mitochondria proteins. Moreover, cytosolic APX-1, 2, MDHAR-1a, 1b and GR genes were the primary genes linked to senescence and biotic stresses, while stAPX-a, b and GR (from organelles) were the most abiotic stress related genes. Biotic and abiotic stress tolerant genotypes generally showed increased MDHAR, DHAR and/or GR mRNA levels compared to susceptible genotypes. Overall, these data clarified evolutionary events in leguminous plants and point to the functional specificity of duplicated genes of the AsA-GSH cycle in G. max.The construction industry in the 21st century faces numerous global challenges associated with growing concerns for the environment. Therefore, this review focuses on the role of lignin and its derivatives in sustainable construction. Lignin’s properties are defined in terms of their structure/property relationships and how structural differences arising from lignin extraction methods influence its application within the construction sector. Lignin and lignin composites allow the partial replacement of petroleum products, making the final materials and the entire construction sector more sustainable. The latest technological developments associated with cement composites, rigid polyurethane foams, paints and coatings, phenolic or epoxy resins, and bitumen replacements are discussed in terms of key engineering parameters. The application of life cycle assessment in construction, which is important from the point of view of estimating the environmental impact of various solutions and materials, is also discussed.This work aimed to use natural deep eutectic solvents to modify the thermal, textural, freeze-thaw, and rheological properties of high amylose rice starch. Three different natural deep eutectic solvents (NADES) composed of sugar and organic acids were applied to modify the properties of starch dispersion. In presence of NADES, the onset temperature of starch was decreased, in comparison with starch in aqueous and glycerol medium. During thermal decomposition, starch with the aqueous and glycerol systems showed two-step weight losses whereas with NADES starch showed single-stage weight losses or decomposition. Moreover, negligible syneresis was observed for starch-NADES dispersion after 3rd cycle of the freeze-thaw process. The flow behavior of starch-NADES dispersion follows Herschel-Bulkley models as R2 (0.996 ≤ R2 ≤ 0.999) are higher than the Mizrahi-Berk model. The flow behavior index (n) of starch-NADES dispersion was closer to 1, indicated a nearly Newtonian fluid. MK-28 chemical structure The loss modulus (G″) value of starch-NADES dispersions was markedly higher than the corresponding storage modulus (G’) value and thus materials behaved like viscoelastic liquid.